
BMS INSTITUTE OF TECHNOLOGY & MANAGEMENT
Yelahanka, Bangalore-64

Department of MCA

Big Data Analytics – Lecture Notes

Module 3

Data

We live in the data age. It’s not easy to measure the total volume of data stored electronically.

This flood of data is coming from many sources. For example:

• The New York Stock Exchange generates about one terabyte of new trade data per

day.

• Facebook hosts approximately 10 billion photos, taking up one petabyte of storage.

• Ancestry.com, the genealogy site, stores around 2.5 petabytes of data.

• The Internet Archive stores around 2 petabytes of data and is growing at a rate of

20 terabytes per month.

• The Large Hadron Collider near Geneva, Switzerland, will produce about 15

petabytes of data per year.

The trend is for every individual’s data footprint to grow, but perhaps more important, the

amount of data generated by machines will be even greater than that generated by people.

Machine logs, RFID readers, sensor networks, vehicle GPS traces, retail transactions—all of these

contribute to the growing mountain of data.

The volume of data being made publicly available increases every year, too. Organizations no

longer have to merely manage their own data; success in the future will be dictated to a large

extent by their ability to extract value from other organizations’ data.

However complex your algorithms are, often they can be beaten simply by having more data.

Though we are having large volumes of data, we are struggling to store and analyze it.

Data Storage and Analysis

Though the storage capacities of hard drives have increased massively over the years, access

speeds—the rate at which data can be read from drives have not kept up. One typical drive from

1990 could store 1,370 MB of data and had a transfer speed of 4.4 MB/s, so you could read all the

data from a full drive in around five minutes. Over 20 years later, one terabyte drives are the

norm, but the transfer speed is around 100 MB/s, so it takes more than two and a half hours to

read all the data off the disk. This is a long time to read all data on a single drive—and writing is

even slower. The obvious way to reduce the time is to read from multiple disks at once. Imagine

if we had 100 drives, each holding one hundredth of the data. Working in parallel, we could read

the data in under two minutes. Using only one hundredth of a disk may seem wasteful. But we

can store one hundred datasets, each of which is one terabyte, and provide shared access to

them.

The problems encountered during storage and analysis of data

The first problem to solve is hardware failure: as soon as you start using many pieces of

hardware, the chance that one will fail is fairly high. A common way of avoiding data loss is through

replication: redundant copies of the data are kept by the system so that in the event of failure,

there is another copy available. This is how RAID works, for instance, although Hadoop’s

filesystem, the Hadoop Distributed Filesystem (HDFS), takes a slightly different approach.

The second problem is that most analysis tasks need to be able to combine the data in some

way, and data read from one disk may need to be combined with the data from any of the other

99 disks. MapReduce provides a programming model that abstracts the problem from disk

reads and writes, transforming it into a computation over sets of keys and values. There are two

parts to the computation, the map and the reduce, and it’s the interface between the two where

the “mixing” occurs. Like HDFS, MapReduce has built- in reliability.

This, in a nutshell, is what Hadoop provides: a reliable shared storage and analysis system. The

storage is provided by HDFS and analysis by MapReduce. There are other parts to Hadoop, but

these capabilities are its kernel.

Comparison with Other Systems

MapReduce is a batch query processor, and the ability to run an ad hoc query against your whole

dataset and get the results in a reasonable time is transformative. It changes the way you think

about data and unlocks data that was previously archived on tape or disk. It gives people the

opportunity to innovate with data. Questions that took too long to get answered before can now

be answered, which in turn leads to new questions and new insights. For example, Mailtrust,

Rackspace’s mail division, used Hadoop for processing email logs. One ad hoc query they wrote

was to find the geographic distribution of their users. By bringing several hundred gigabytes of

data together and having the tools to analyze it, the Rackspace engineers were able to gain an

understanding of the data that they otherwise would never have had, and, furthermore, they

were able to use what they had learned to improve the service for their customers.

Rational Database Management System

Why can’t we use databases with lots of disks to do large-scale batch analysis? Why is

MapReduce needed?

The seek time is improving more slowly than transfer rate. Seeking is the process of moving the

disk’s head to a particular place on the disk to read or write data. It characterizes the latency of

a disk operation, whereas the transfer rate corresponds to a disk’s bandwidth.

If the data access pattern is dominated by seeks, it will take longer to read or write large portions

of the dataset than streaming through it, which operates at the transfer rate. On the other hand,

for updating a small proportion of records in a database, a traditional B-Tree (the data structure

used in relational databases, which is limited by the rate it can perform seeks) works well. For

updating the majority of a database, a B-Tree is less efficient than MapReduce, which uses

Sort/Merge to rebuild the database.

In many ways, MapReduce can be seen as a complement to a Rational Database Management

System (RDBMS). MapReduce is a good fit for problems that need to analyze the whole dataset

in a batch fashion, particularly for ad hoc analysis. An RDBMS is good for point queries or updates,

where the dataset has been indexed to deliver low-latency retrieval and update times of a

relatively small amount of data. MapReduce suits applications where the data is written once

and read many times, whereas a relational database is good for datasets that are continually

updated.

Table 1-1. RDBMS compared to MapReduce

 Traditional RDBMS MapReduce

Data size Gigabytes Petabytes

Access Interactive and batch Batch

Updates Read and write many
times

Write once, read many
times

Structure Static schema Dynamic schema
Integrity High Low

 Scaling Nonlinear Linear

Another difference between MapReduce and an RDBMS is the amount of structure in the

datasets on which they operate. Structured data is data that is organized into entities that have a

defined format, such as XML documents or database tables that conform to a particular

predefined schema. This is the realm of the RDBMS. Semi-structured data, on the other hand, is

looser, and though there may be a schema, it is often ignored, so it may be used only as a guide to

the structure of the data: for example, a spreadsheet, in which the structure is the grid of cells,

although the cells themselves may hold any form of data. Unstructured data does not have any

particular internal structure: for example, plain text or image data. MapReduce works well on

unstructured or semi- structured data because it is designed to interpret the data at processing

time.

Relational data is often normalized to retain its integrity and remove redundancy.

Normalization poses problems for MapReduce because it makes reading a record a nonlocal

operation, and one of the central assumptions that MapReduce makes is that it is possible to

perform (high-speed) streaming reads and writes.

A web server log is a good example of a set of records that is not normalized (for example, the

client hostnames are specified in full each time, even though the same client may appear many

times), and this is one reason that logfiles of all kinds are particularly well-suited to analysis with

MapReduce.

MapReduce is a linearly scalable programming model. The programmer writes two functions—

a map function and a reduce function—each of which defines a mapping from one set of key-

value pairs to another. These functions are oblivious to the size of the data or the cluster that

they are operating on, so they can be used unchanged for a small dataset and for a massive one.

More important, if you double the size of the input data, a job will run twice as slow. But if you

also double the size of the cluster, a job will run as fast as the original one. This is not generally

true of SQL queries.

Over time, however, the differences between relational databases and MapReduce systems are

likely to blur—both as relational databases start incorporating some of the ideas from

MapReduce and, from the other direction, as higher-level query languages built on MapReduce

(such as Pig and Hive) make MapReduce systems more approachable for traditional database

programmers.

Grid Computing

The High Performance Computing (HPC) and Grid Computing communities have been doing

large-scale data processing for years, using such Application Program Interfaces (APIs) as

Message Passing Interface (MPI). The approach in HPC is to distribute the work across a cluster of

machines, which access a shared file system, hosted by a Storage Area Network (SAN). This works

well for predominantly compute- intensive jobs, but it becomes a problem when nodes need to

access larger data volumes since the network bandwidth is the bottleneck and compute nodes

become idle.

MapReduce tries to collocate the data with the compute node, so data access is fast because it

is local. This feature, known as data locality, is at the heart of MapReduce and is the reason for

its good performance. Recognizing that network bandwidth is the most precious resource in a

data center environment (it is easy to saturate network links by copying data around),

MapReduce implementations conserve it by explicitly modelling network topology. MapReduce

operates only at the higher level: the programmer thinks in terms of functions of key and value

pairs, and the data flow is implicit.

Coordinating the processes in a large-scale distributed computation is a challenge. The hardest

aspect is gracefully handling partial failure—when you don’t know whether or not a remote

process has failed—and still making progress with the overall computation. MapReduce spares

the programmer from having to think about failure, since the implementation detects failed map

or reduce tasks and reschedules replacements on machines that are healthy. MapReduce is able

to do this because it is a shared-nothing architecture, meaning that tasks have no dependence

on one other. So from the programmer’s point of view, the order in which the tasks run doesn’t

matter. By contrast, MPI programs have to explicitly manage their own check pointing and

recovery, which gives more control to the programmer but makes them more difficult to write.

MapReduce might sound like a restrictive programming model as we are limited to key and value

types that are related in specified ways, and mappers and reducers run with very limited

coordination between one another (the mappers pass keys and values to reducers). Large range

of algorithms can be expressed in MapReduce, from image analysis, to graph-based problems,

to machine learning algorithms.

Volunteer Computing

SETI, the Search for Extra-Terrestrial Intelligence, runs a project called SETI@home in which

volunteers donate CPU time from their otherwise idle computers to analyze radio telescope data

for signs of intelligent life outside earth. SETI@home is the most well-known of many volunteer

computing projects. Others include the Great Internet Mersenne Prime Search (to search for

large prime numbers) and Folding@home (to understand protein folding and how it relates to

disease).

http://setiathome.berkeley.edu/

Volunteer computing projects work by breaking the problem they are trying to solve into chunks

called work units, which are sent to computers around the world to be analyzed. For example, a

SETI@home work unit is about 0.35 MB of radio telescope data, and takes hours or days to analyze

on a typical home computer. When the analysis is completed, the results are sent back to the

server, and the client gets another work unit. As a precaution to combat cheating, each work

unit is sent to three different machines and needs at least two results to agree to be accepted.

Although SETI@home may be similar to MapReduce (breaking a problem into independent pieces

to be worked on in parallel), there are some significant differences. The SETI@home problem is

very CPU-intensive, which makes it suitable for running on hundreds of thousands of computers

across the world because the time to transfer the work unit is dwarfed by the time to run the

computation on it. Volunteers are donating CPU cycles, not bandwidth.

MapReduce is designed to run jobs that last minutes or hours on trusted, dedicated

hardware running in a single data center with very high aggregate bandwidth inter-

connects. By contrast, SETI@home runs a perpetual computation on untrusted machines on

the Internet with highly variable connection speeds and no data locality.

A Brief History of Hadoop

Hadoop was created by Doug Cutting, the creator of Apache Lucene, the widely used text search

library. Hadoop has its origins in Apache Nutch, an open source web search engine, itself a part

of the Lucene project. The following is the timeline of the progress of Hadoop:

 2004: Initial versions of what is now Hadoop Distributed Filesystem and

MapReduce implemented by Doug Cutting and Mike Cafarella.

 December 2005: Nutch ported to the new framework. Hadoop runs reliably on 20 nodes.

 January 2006: Doug Cutting joins Yahoo!.

 February 2006: Apache Hadoop project officially started to support the

standalone development of MapReduce and HDFS.

 February 2006: Adoption of Hadoop by Yahoo! Grid team.

 April 2006: Sort benchmark (10 GB/node) run on 188 nodes in 47.9 hours.

 May 2006: Yahoo! set up a Hadoop research cluster—300 nodes.

 May 2006: Sort benchmark run on 500 nodes in 42 hours (better hardware

than April benchmark).

 October 2006: Research cluster reaches 600 nodes.

 December 2006: Sort benchmark run on 20 nodes in 1.8 hours, 100 nodes in

3.3 hours, 500 nodes in 5.2 hours, 900 nodes in 7.8 hours.

 January 2007: Research cluster reaches 900 nodes.

 April 2007: Research clusters—two clusters of 1000 nodes.

 April 2008: Won the 1-terabyte sort benchmark in 209 seconds on 900 nodes.

 October 2008: Loading 10 terabytes of data per day onto research clusters.

 March 2009: 17 clusters with a total of 24,000 nodes.

 April 2009: Won the minute sort by sorting 500 GB in 59 seconds (on 1,400

nodes) and the 100-terabyte sort in 173 minutes (on 3,400 nodes).

Apache Hadoop and the Hadoop Ecosystem

Although Hadoop is best known for MapReduce and its distributed file system, the term is also

used for a family of related projects that fall under the umbrella of infrastructure for distributed

computing and large-scale data processing.

All of the core projects are hosted by the Apache Software Foundation which provides support

for a community of open source software projects, including the original HTTP Server.

The Hadoop projects are described briefly here:

Common

A set of components and interfaces for distributed file systems and general I/O (serialization,

Java RPC, persistent data structures).

Avro

A serialization system for efficient, cross-language RPC and persistent data storage.

MapReduce

A distributed data processing model and execution environment that runs on large clusters of

commodity machines.

HDFS

A distributed file system that runs on large clusters of commodity machines.

Pig

A data flow language and execution environment for exploring very large datasets. Pig runs on

HDFS and MapReduce clusters.

Hive

A distributed data warehouse. Hive manages data stored in HDFS and provides a query language

based on SQL (and which is translated by the runtime engine to MapReduce jobs) for querying

the data.

HBase

A distributed, column-oriented database. HBase uses HDFS for its underlying storage, and

supports both batch-style computations using MapReduce and point queries (random reads).

ZooKeeper

A distributed, highly available coordination service. ZooKeeper provides primitives such as

distributed locks that can be used for building distributed applications.

http://hadoop.apache.org/
http://hadoop.apache.org/

Sqoop

A tool for efficient bulk transfer of data between structured data stores (such as relational

databases) and HDFS.

Oozie

A service for running and scheduling workflows of Hadoop jobs (including Map- Reduce, Pig,

Hive, and Sqoop jobs).

Hadoop Releases

There are a few active release series. The 1.x release series is a continuation of the 0.20 release

series and contains the most stable versions of Hadoop currently available. This series includes

secure Kerberos authentication, which prevents unauthorized access to Hadoop data.

The 0.22 and 2.x release series are not currently stable. 2.x includes several major new features:

 A new MapReduce runtime, called MapReduce 2, implemented on a new system called

YARN (Yet Another Resource Negotiator), which is a general resource management system

for running distributed applications.

 HDFS federation, which partitions the HDFS namespace across multiple

namenodes to support clusters with very large numbers of files.

 HDFS high-availability, which removes the namenode as a single point of failure by

supporting standby namenodes for failover.

Table 1-2. Features supported by Hadoop release series

Feature 1.x 0.22 2.x

Secure authentication Yes No Yes

Old configuration names Yes Deprecated Deprecated

New configuration names No Yes Yes

Old MapReduce API Yes Yes Yes

New MapReduce API Yes (with some
missing libraries)

Yes Yes

MapReduce 1 runtime (Classic) Yes Yes No

MapReduce 2 runtime (YARN) No No Yes
HDFS federation No No Yes

 HDFS high-availability No No Yes

**

BMS INSTITUTE OF TECHNOLOGY & MANAGEMENT
Yelahanka, Bangalore-64

Department of MCA

Big Data Analytics – Lecture Notes

Module 4

When a dataset outgrows the storage capacity of a single physical machine, it becomes necessary

to partition it across a number of separate machines. File systems that manage the storage across

a network of machines are called distributed file systems. Since they are network-based, all the

complications of network programming kick in, thus making distributed file systems more

complex than regular disk file systems. For example, one of the biggest challenges is making the

file system tolerate node failure without suffering data loss.

Hadoop comes with a distributed file system called HDFS, which stands for Hadoop Distributed

File system.

The Design of HDFS
HDFS is a file system designed for storing very large files with streaming data access patterns,

running on clusters of commodity hardware.

Very large files

“Very large” in this context means files that are hundreds of megabytes, gigabytes, or terabytes

in size. There are Hadoop clusters running today that store petabytes of data.

Streaming data access

HDFS is built around the idea that the most efficient data processing pattern is a write-once,

read-many-times pattern. A dataset is typically generated or copied from source, and then

various analyses are performed on that dataset over time. Each analysis will involve a large

proportion of the dataset, so the time to read the whole dataset is more important than the

latency in reading the first record.

Commodity hardware

Hadoop doesn’t require expensive, highly reliable hardware. It’s designed to run on clusters of

commodity hardware (commonly available hardware that can be obtained from multiple

vendors) for which the chance of node failure across the cluster is high, at least for large clusters.

HDFS is designed to carry on working without a noticeable interruption to the user in the face

of such failure.

It is also worth examining the applications for which using HDFS does not work so well. These

are areas where HDFS is not a good fit today:

Low-latency data access

Applications that require low-latency access to data, in the tens of milliseconds range, will not

work well with HDFS. Remember, HDFS is optimized for delivering a high throughput of data, and

this may be at the expense of latency. HBase is currently a better choice for low-latency access.

Lots of small files

Because the namenode holds file system metadata in memory, the limit to the number of files in

a file system is governed by the amount of memory on the namenode. As a rule of thumb, each

file, directory, and block takes about 150 bytes. So, for example, if you had one million files, each

taking one block, you would need at least 300 MB of memory.

Multiple writers, arbitrary file modifications

Files in HDFS may be written to by a single writer. Writes are always made at the end of the file.

There is no support for multiple writers or for modifications at arbitrary offsets in the file.

HDFS Concepts

Blocks

A disk has a block size, which is the minimum amount of data that it can read or write. File systems

for a single disk build on this by dealing with data in blocks, which are an integral multiple of the

disk block size. File system blocks are typically a few kilobytes in size, whereas disk blocks are

normally 512 bytes. This is generally transparent to the file system user who is simply reading or

writing a file of whatever length. However, there are tools to perform file system maintenance,

such as df and fsck, that operate on the file system block level.

HDFS, too, has the concept of a block, but it is a much larger unit—64 MB by default. Like in a file

system for a single disk, files in HDFS are broken into block-sized chunks, which are stored as

independent units. Unlike a file system for a single disk, a file in HDFS that is smaller than a single

block does not occupy a full block’s worth of underlying storage.

Having a block abstraction for a distributed file system brings several benefits. The first benefit

is the most obvious: a file can be larger than any single disk in the network. There’s nothing

that requires the blocks from a file to be stored on the same disk, so they can take advantage

of any of the disks in the cluster. In fact, it would be possible to store a single file on an HDFS

cluster whose blocks filled all the disks in the cluster.

Second, making the unit of abstraction a block rather than a file simplifies the storage

subsystem. The storage subsystem deals with blocks, simplifying storage management (because

blocks are a fixed size, it is easy to calculate how many can be stored on a given disk) and

eliminating metadata concerns.

Furthermore, blocks fit well with replication for providing fault tolerance and availability. To

insure against corrupted blocks and disk and machine failure, each block is replicated to a small

number of physically separate machines (typically three). If a block becomes unavailable, a copy

can be read from another location in a way that is transparent to the client. A block that is no

longer available due to corruption or machine failure can be replicated from its alternative

locations to other live machines to bring the replication factor back to the normal level. Similarly,

some applications may choose to set a high replication factor for the blocks in a popular file to

spread the read load on the cluster.

Like its disk file system cousin, HDFS’s fsck command understands blocks. For example,

running:

 % hadoop fsck / -files -blocks

will list the blocks that make up each file in the file system.

Namenodes and Datanodes

An HDFS cluster has two types of nodes operating in a master-worker pattern: a name- node (the

master) and a number of datanodes (workers). The namenode manages the file system

namespace. It maintains the file system tree and the metadata for all the files and directories in

the tree. This information is stored persistently on the local disk in the form of two files: the

namespace image and the edit log. The namenode also knows the datanodes on which all the

blocks for a given file are located; however, it does not store block locations persistently,

because this information is reconstructed from datanodes when the system starts.

A client accesses the file system on behalf of the user by communicating with the namenode and

datanodes. The client presents a filesystem interface similar to a Portable Operating System

Interface (POSIX), so the user code does not need to know about the namenode and datanode to

function.

Datanodes are the workhorses of the filesystem. They store and retrieve blocks when they are

told to (by clients or the namenode), and they report back to the namenode periodically with

lists of blocks that they are storing.

Without the namenode, the file system cannot be used. In fact, if the machine running the

namenode were obliterated, all the files on the file system would be lost since there would be

no way of knowing how to reconstruct the files from the blocks on the datanodes. For this

reason, it is important to make the namenode resilient to failure, and Hadoop provides two

mechanisms for this.

The first way is to back up the files that make up the persistent state of the file system metadata.

Hadoop can be configured so that the namenode writes its persistent state to multiple file

systems. These writes are synchronous and atomic. The usual configuration choice is to write to

local disk as well as a remote NFS mount.

It is also possible to run a secondary namenode, which despite its name does not act as a

namenode. Its main role is to periodically merge the namespace image with the edit log to

prevent the edit log from becoming too large. The secondary namenode usually runs on a

separate physical machine because it requires plenty of CPU and as much memory as the

namenode to perform the merge. It keeps a copy of the merged namespace image, which can

be used in the event of the namenode failing. However, the state of the secondary namenode

lags that of the primary, so in the event of total failure of the primary, data loss is almost certain.

The usual course of action in this case is to copy the namenode’s metadata files that are on NFS

to the secondary and run it as the new primary.

HDFS Federation

The namenode keeps a reference to every file and block in the file system in memory, which

means that on very large clusters with many files, memory becomes the limiting factor for scaling.

HDFS Federation, introduced in the 2.x release series, allows a cluster to scale by adding

namenodes, each of which manages a portion of the filesystem namespace. For example, one

namenode might manage all the files rooted under /user, say, and a second namenode might

handle files under /share.

Under federation, each namenode manages a namespace volume, which is made up of the

metadata for the namespace, and a block pool containing all the blocks for the files in the

namespace. Namespace volumes are independent of each other, which means namenodes do

not communicate with one another, and furthermore the failure of one namenode does not

affect the availability of the namespaces managed by other namenodes. Block pool storage is not

partitioned, however, so datanodes register with each namenode in the cluster and store blocks

from multiple block pools.

To access a federated HDFS cluster, clients use client-side mount tables to map file paths to

namenodes. This is managed in configuration using ViewFileSystem and the viewfs:// URIs.

HDFS High-Availability

The combination of replicating namenode metadata on multiple file systems and using the

secondary namenode to create checkpoints protects against data loss, but it does not provide

high-availability of the file system. The namenode is still a single point of failure (SPOF). If it did

fail, all clients including MapReduce jobs would be unable to read, write, or list files, because the

namenode is the sole repository of the metadata and the file-to-block mapping. In such an event

the whole Hadoop system would effectively be out of service until a new namenode could be

brought online.

To recover from a failed namenode in this situation, an administrator starts a new primary

namenode with one of the file system metadata replicas and configures datanodes and clients

to use this new namenode. The new namenode is not able to serve requests until it has

i) loaded its namespace image into memory,

ii) replayed its edit log, and

iii) received enough block reports from the datanodes to leave safe mode.

On large clusters with many files and blocks, the time it takes for a namenode to start from cold

can be 30 minutes or more.

The long recovery time is a problem for routine maintenance too. In fact, because unexpected

failure of the namenode is so rare, the case for planned downtime is actually more important in

practice.

The 2.x release series of Hadoop remedies this situation by adding support for HDFS high-

availability (HA). In this implementation there is a pair of namenodes in an active- standby

configuration. In the event of the failure of the active namenode, the standby takes over its

duties to continue servicing client requests without a significant interruption. A few architectural

changes are needed to allow this to happen:

 The namenodes must use highly available shared storage to share the edit log. When a

standby namenode comes up, it reads up to the end of the shared edit log to synchronize

its state with the active namenode, and then continues to read new entries as they are

written by the active namenode.

 Datanodes must send block reports to both namenodes because the block mappings are

stored in a namenode’s memory, and not on disk.

 Clients must be configured to handle namenode failover, using a mechanism that is

transparent to users.

If the active namenode fails, the standby can take over very quickly (in a few tens of seconds)

because it has the latest state available in memory: both the latest edit log entries and an up-to-

date block mapping. The actual observed failover time will be longer in practice (around a minute

or so), because the system needs to be conservative in deciding that the active namenode has

failed.

In the unlikely event of the standby being down when the active fails, the administrator can still

start the standby from cold. This is no worse than the non-HA case, and from an operational point

of view it’s an improvement, because the process is a standard operational procedure built into

Hadoop.

Failover and fencing

The transition from the active namenode to the standby is managed by a new entity in the

system called the failover controller. Failover controllers are pluggable, but the first

implementation uses ZooKeeper to ensure that only one namenode is active. Each namenode

runs a lightweight failover controller process whose job it is to monitor its namenode for failures

(using a simple heartbeating mechanism) and trigger a failover should a namenode fail.

Failover may also be initiated manually by an administrator, for example, in the case of routine

maintenance. This is known as a graceful failover, since the failover controller arranges an orderly

transition for both namenodes to switch roles.

In the case of an ungraceful failover, however, it is impossible to be sure that the failed namenode

has stopped running. For example, a slow network or a network partition can trigger a failover

transition, even though the previously active namenode is still running and thinks it is still the

active namenode. The HA implementation goes to great lengths to ensure that the previously

active namenode is prevented from doing any damage and causing corruption—a method

known as fencing. The system employs a range of fencing mechanisms, including killing the

namenode’s process, revoking its access to the shared storage directory, and disabling its

network port via a remote management command. As a last resort, the previously active

namenode can be fenced with a technique known as STONITH, or “shoot the other node in the

head,” which uses a specialized power distribution unit to forcibly power down the host

machine.

Client failover is handled transparently by the client library. The simplest implementation uses

client-side configuration to control failover. The HDFS URI uses a logical hostname that is

mapped to a pair of namenode addresses (in the configuration file), and the client library tries

each namenode address until the operation succeeds.

The Command-Line Interface

We’re going to have a look at HDFS by interacting with it from the command line. There are

many other interfaces to HDFS, but the command line is one of the simplest way.

We are going to run HDFS on one machine, so first follow the instructions for setting up Hadoop

in pseudo distributed mode. Later we’ll see how to run HDFS on a cluster of machines to give

us scalability and fault tolerance.

There are two properties that we set in the pseudo distributed configuration. The first is

fs.default.name, set to hdfs://localhost/, which is used to set a default file system for Hadoop.

File systems are specified by a URI, and here we have used an hdfs URI to configure Hadoop to

use HDFS by default. The HDFS daemons will use this property to determine the host and port

for the HDFS namenode. We’ll be running it on localhost, on the default HDFS port, 8020. And

HDFS clients will use this property to work out where the namenode is running so they can

connect to it.

We set the second property, dfs.replication, to 1 so that HDFS doesn’t replicate file system

blocks by the default factor of three. When running with a single datanode, HDFS can’t

replicate blocks to three datanodes, so it would perpetually warn about blocks being under-

replicated. This setting solves that problem.

Basic Filesystem Operations

The filesystem is ready to be used, and we can do all of the usual filesystem operations, such as

reading files, creating directories, moving files, deleting data, and listing directories. You can type

hadoop fs -help to get detailed help on every command.

Start by copying a file from the local filesystem to HDFS:

% hadoop fs -copyFromLocal input/docs/quangle.txt
hdfs://localhost/user/tom/ quangle.txt

This command invokes Hadoop’s filesystem shell command fs, which supports a number of

subcommands—in this case, we are running -copyFromLocal. The local file quangle.txt is

copied to the file /user/tom/quangle.txt on the HDFS instance running on localhost. In fact, we

could have omitted the scheme and host of the URI and picked up the default,

hdfs://localhost, as specified in core-site.xml:

% hadoop fs -copyFromLocal input/docs/quangle.txt /user/tom/quangle.txt

We also could have used a relative path and copied the file to our home directory in HDFS, which

in this case is /user/tom:

% hadoop fs -copyFromLocal input/docs/quangle.txt quangle.txt

Let’s copy the file back to the local filesystem and check whether it’s the same:

% hadoop fs -copyToLocal quangle.txt quangle.copy.txt

 % md5 input/docs/quangle.txt quangle.copy.txt

MD5 (input/docs/quangle.txt) = a16f231da6b05e2ba7a339320e7dacd9

MD5 (quangle.copy.txt) = a16f231da6b05e2ba7a339320e7dacd9

The MD5 digests are the same, showing that the file survived its trip to HDFS and is back intact.

Finally, let’s look at an HDFS file listing. We create a directory first just to see how it is displayed

in the listing:
% hadoop fs -mkdir books
% hadoop fs -ls .
Found 2 items

 drwxr-xr-x - tom supergroup 0 2009-04-02 22:41 /user/tom/books
 -rw-r--r-- 1 tom supergroup 118 2009-04-02 22:29 /user/tom/quangle.txt

The information returned is very similar to the Unix command ls -l, with a few minor

differences. The first column shows the file mode. The second column is the replication factor of

the file. Remember we set the default replication factor in the site-wide configuration to be 1,

which is why we see the same value here. The entry in this column is empty for directories

because the concept of replication does not apply to them—directories are treated as metadata

and stored by the namenode, not the datanodes. The third and fourth columns show the file

owner and group. The fifth column is the size of the file in bytes, or zero for directories. The sixth

and seventh columns are the last modified date and time. Finally, the eighth column is the

absolute name of the file or directory.

Hadoop Filesystems
Hadoop has an abstract notion of filesystem, of which HDFS is just one implementation. The Java

abstract class org.apache.hadoop.fs.FileSystem represents a filesystem in Hadoop, and there

are several concrete implementations, which are described in the following table:

Hadoop provides many interfaces to its filesystems, and it generally uses the URI scheme to pick

the correct filesystem instance to communicate with. For example, the filesystem shell operates

with all Hadoop filesystems. To list the files in the root directory of the local filesystem, type:

% hadoop fs -ls file:///

Although it is possible to run MapReduce programs that access any of these filesystems, when

you are processing large volumes of data, you should choose a distributed filesystem that has

the data locality optimization, notably HDFS.

Interfaces

Hadoop is written in Java, and all Hadoop filesystem interactions are mediated through the Java

API. The filesystem shell, for example, is a Java application that uses the Java FileSystem class to

provide filesystem operations. These interfaces are most commonly used with HDFS, since the

other filesystems in Hadoop typically have existing tools to access the underlying filesystem (FTP

clients for FTP, S3 tools for S3, etc.), but many of them will work with any Hadoop filesystem.

HTTP

There are two ways of accessing HDFS over HTTP: directly, where the HDFS daemons serve HTTP

requests to clients; and via a proxy (or proxies), which accesses HDFS on the client’s behalf using

the usual DistributedFileSystem API. The two ways are illustrated in the following Figure:

In the first case, directory listings are served by the namenode’s embedded web server (which

runs on port 50070) formatted in XML or JSON, whereas file data is streamed from datanodes

by their web servers (running on port 50075).

The original direct HTTP interface (HFTP and HSFTP) was read-only, but the new WebHDFS

implementation supports all filesystem operations, including Kerberos authentication.

WebHDFS must be enabled by setting dfs.webhdfs.enabled to true, which allows you to use

webhdfs URIs.

The second way of accessing HDFS over HTTP relies on one or more standalone proxy servers. (The

proxies are stateless so they can run behind a standard load balancer.) All traffic to the cluster

passes through the proxy. This allows for stricter firewall and bandwidth-limiting policies to be

put in place. It’s common to use a proxy for transfers between Hadoop clusters located in

different data centers.

The original HDFS proxy was read-only and could be accessed by clients using the HSFTP

FileSystem implementation (hsftp URIs). From release 1.0.0, there is a new proxy called HttpFS

that has read and write capabilities and exposes the same HTTP interface as WebHDFS, so clients

can access both using webhdfs URIs.

The HTTP REST API that WebHDFS exposes is formally defined in a specification, so it is expected

that over time clients in languages other than Java will be written that use it directly.

C

Hadoop provides a C library called libhdfs that mirrors the Java FileSystem interface (it was

written as a C library for accessing HDFS, but despite its name it can be used to access any

Hadoop filesystem). It works using the Java Native Interface (JNI) to call a Java filesystem client.

The C API is very similar to the Java one, but it typically lags the Java one, so newer features may

not be supported. You can find the generated documentation for the C API in the

libhdfs/docs/api directory of the Hadoop distribution.

FUSE

Filesystem in Userspace (FUSE) allows filesystems that are implemented in user space to be

integrated as a Unix filesystem. Hadoop’s Fuse-DFS contrib module allows any Hadoop

filesystem (but typically HDFS) to be mounted as a standard filesystem. You can then use Unix

utilities (such as ls and cat) to interact with the filesystem, as well as POSIX libraries to access

the filesystem from any programming language.

Fuse-DFS is implemented in C using libhdfs as the interface to HDFS. Documentation for

compiling and running Fuse-DFS is located in the src/contrib/fuse-dfs directory of the Hadoop

distribution.

The Java Interface
In this section, we dig into the Hadoop’s FileSystem class: the API for interacting with one of

Hadoop’s filesystems. We should to write our code against the FileSystem abstract class, to

retain portability across filesystems. This is very useful when testing your program, for example,

because you can rapidly run tests using data stored on the local filesystem.

Reading Data from a Hadoop URL

One of the simplest ways to read a file from a Hadoop filesystem is by using a java.net.URL object
to open a stream to read the data from. The general idiom is:

InputStream in = null;

try {

in = new URL("hdfs://host/path").openStream();

// process in

} finally {
IOUtils.closeStream(in);

}

There’s a little bit more work required to make Java recognize Hadoop’s hdfs URL scheme.

This is achieved by calling the setURLStreamHandlerFactory method on URL with an

instance of FsUrlStreamHandlerFactory. This method can be called only once per JVM, so it is

typically executed in a static block. This limitation means that if some other part of your

program—perhaps a third-party component outside your control— sets a

URLStreamHandlerFactory, you won’t be able to use this approach for reading data from

Hadoop.

This example shows a program for displaying files from Hadoop file systems on standard output, like
the Unix cat command.

Example 3-1. Displaying files from a Hadoop filesystem on standard output using a

URLStreamHandler

public class URLCat {

 static {

URL.setURLStreamHandlerFactory(new FsUrlStreamHandlerFactory());

 }

 public static void main(String[] args) throws Exception {

 InputStream in = null;

 try {

 in = new URL(args[0]).openStream();

 IOUtils.copyBytes(in, System.out, 4096, false);

 } finally {

IOUtils.closeStream(in);

 }

 }

 }

We make use of the handy IOUtils class that comes with Hadoop for closing the stream in the

finally clause, and also for copying bytes between the input stream and the output stream

(System.out in this case). The last two arguments to the copyBytes method are the buffer

size used for copying and whether to close the streams when the copy is complete. We close the

input stream ourselves, and System.out doesn’t need to be closed.

Here’s a sample run:

% hadoop URLCat hdfs://localhost/user/tom/quangle.txt

 On the top of the Crumpetty Tree
 The Quangle Wangle sat,
 But his face you could not see,
 On account of his Beaver Hat.

Reading Data Using the FileSystem API

A file in a Hadoop filesystem is represented by a Hadoop Path object (and not a java.io.File
object, since its semantics are too closely tied to the local filesystem). You can think of a Path as a
Hadoop filesystem URI, such as hdfs://localhost/user/tom/ quangle.txt.

FileSystem is a general filesystem API, so the first step is to retrieve an instance for the filesystem

we want to use—HDFS in this case. There are several staticfactory methods for getting a FileSystem

instance:

public static FileSystem get(Configuration conf) throws IOException
public static FileSystem get(URI uri, Configuration conf) throws IOException

public static FileSystem get(URI uri, Configuration conf, String user) throws
IOException

A Configuration object encapsulates a client or server’s configuration, which is set using

configuration files read from the classpath, such as conf/core-site.xml. The first method returns

the default filesystem. The second uses the given URI’s scheme and authority to determine the

filesystem to use, falling back to the default filesystem if no scheme is specified in the given URI.

The third retrieves the filesystem as the given user, which is important in the context of security.

In some cases, you may want to retrieve a local filesystem instance, in which case you can use

the convenience method, getLocal():

public static LocalFileSystem getLocal(Configuration conf) throws IOException

With a FileSystem instance in hand, we invoke an open() method to get the input stream for a
file:

public FSDataInputStream open(Path f) throws IOException
public abstract FSDataInputStream open(Path f, int bufferSize) throws IOException

The first method uses a default buffer size of 4 KB.

Putting this together, we can rewrite Example 3-1 as follows:

Example 3-2. Displaying files from a Hadoop filesystem on standard output by using the FileSystem

directly

public class FileSystemCat {

 public static void main(String[] args) throws Exception {

String uri args[0];

Configuration conf = new Configuration();

FileSystem fs = FileSystem.get(URI.create(uri), conf);
InputStream in = null;

try {

 in = fs.open(new Path(uri));

 IOUtils.copyBytes(in, System.out, 4096, false);

 } finally {

IOUtils.closeStream(in);

 }

 }

 }

The program runs as follows:

% hadoop FileSystemCat hdfs://localhost/user/tom/quangle.txt

On the top of the Crumpetty Tree
The Quangle Wangle sat,
But his face you could not see,
On account of his Beaver Hat.

FSDataInputStream

The open() method on FileSystem actually returns a FSDataInputStream rather than a
standard java.io class. This class is a specialization of java.io.DataInputStream with support
for random access, so you can read from any part of the stream:

package org.apache.hadoop.fs;

public class FSDataInputStream extends DataInputStream
 implements Seekable, PositionedReadable {
 // implementation elided

 }

The Seekable interface permits seeking to a position in the file and a query method for the current
offset from the start of the file (getPos()):

public interface Seekable {
 void seek(long pos) throws IOException;
 long getPos() throws IOException;

 }

Calling seek() with a position that is greater than the length of the file will result in an

IOException. Unlike the skip() method of java.io.InputStream, which positions the stream

at a point later than the current position, seek() can move to an arbitrary, absolute position
in the file.

Example 3-3 is a simple extension of Example 3-2 that writes a file to standard out twice: after

writing it once, it seeks to the start of the file and streams through it once again.

Example 3-3. Displaying files from a Hadoop filesystem on standard output twice, by using seek

public class FileSystemDoubleCat {
 public static void main(String[] args) throws Exception {
 String uri = args[0];
 Configuration conf = new Configuration();
 FileSystem fs = FileSystem.get(URI.create(uri), conf); FSDataInputStream in = null;
 try {
 in = fs.open(new Path(uri));
 IOUtils.copyBytes(in, System.out, 4096, false);
 in.seek(0); // go back to the start of the file
 IOUtils.copyBytes(in, System.out, 4096, false);
 } finally {
 IOUtils.closeStream(in);
 }
 }
}

Here’s the result of running it on a small file:

 % hadoop FileSystemDoubleCat hdfs://localhost/user/tom/quangle.txt

On the top of the Crumpetty Tree
The Quangle Wangle sat,
But his face you could not see,
On account of his Beaver Hat.
On the top of the Crumpetty Tree
The Quangle Wangle sat,

 But his face you could not see,
 On account of his Beaver Hat.

file:///C:/Users/student/Desktop/VAC-DataAnalytics/BigDataAnalytics/BigDataRefText3.docx%23_bookmark251
file:///C:/Users/student/Desktop/VAC-DataAnalytics/BigDataAnalytics/BigDataRefText3.docx%23_bookmark246

FSDataInputStream also implements the PositionedReadable interface for reading parts of a

file at a given offset:

public interface PositionedReadable {
 public int read(long position, byte[] buffer, int offset, int length) throws IOException;
 public void readFully(long position, byte[] buffer, int offset, int length) throws IOException;

 public void readFully(long position, byte[] buffer) throws IOException;
 }

The read() method reads up to length bytes from the given position in the file into the
buffer at the given offset in the buffer. The return value is the number of bytes actually read;

callers should check this value, as it may be less than length. The readFully() methods will

read length bytes into the buffer unless the end of the file is reached, in which case an
EOFException is thrown.

All of these methods preserve the current offset in the file and are thread-safe, so they provide a

convenient way to access another part of the file metadata while reading the main body of the

file.

Finally, bear in mind that calling seek() is a relatively expensive operation and should be used

sparingly. You should structure your application access patterns to rely on streaming data rather

than performing a large number of seeks.

Writing Data

The FileSystem class has a number of methods for creating a file. The simplest is the method

that takes a Path object for the file to be created and returns an output stream to write to:

public FSDataOutputStream create(Path f) throws IOException

There are overloaded versions of this method that allow you to specify whether to forcibly

overwrite existing files, the replication factor of the file, the buffer size to use when writing the

file, the block size for the file, and file permissions.

There’s also an overloaded method for passing a callback interface, Progressable, so your

application can be notified of the progress of the data being written to the datanodes:

package org.apache.hadoop.util;

public interface
Progressable {

 public void progress();

 }

As an alternative to creating a new file, you can append to an existing file using the append()
method:

public FSDataOutputStream append(Path f) throws IOException

The append operation allows a single writer to modify an already written file by opening it and

writing data from the final offset in the file. With this API, applications that produce unbounded

files, such as logfiles, can write to an existing file after having closed it. The append operation

is optional and not implemented by all Hadoop file systems.

Example 3-4 shows how to copy a local file to a Hadoop filesystem. We illustrate progress by

printing a period every time the progress() method is called by Hadoop, which is after each 64

file:///C:/Users/student/Desktop/VAC-DataAnalytics/BigDataAnalytics/BigDataRefText3.docx%23_bookmark264

KB packet of data is written to the datanode pipeline.

Example 3-4. Copying a local file to a Hadoop filesystem

public class FileCopyWithProgress {
 public static void main(String[] args) throws Exception {
 String localSrc = args[0];
 String dst = args[1];

 InputStream in = new BufferedInputStream(new FileInputStream(localSrc));

 Configuration conf = new Configuration();
 FileSystem fs = FileSystem.get(URI.create(dst), conf);
 OutputStream out = fs.create(new Path(dst), new Progressable() {
 public void progress() {
 System.out.print(".");
 }
 });

 IOUtils.copyBytes(in, out, 4096, true);
 }
}

Typical usage:

% hadoop FileCopyWithProgress input/docs/1400-8.txt
hdfs://localhost/user/tom/ 1400-8.txt

...............

Currently, none of the other Hadoop filesystems call progress() during writes. Progress is
important in MapReduce applications.

FSDataOutputStream

The create() method on FileSystem returns an FSDataOutputStream, which, like
FSDataInputStream, has a method for querying the current position in the file:

package org.apache.hadoop.fs;

public class FSDataOutputStream extends DataOutputStream implements Syncable {
 public long getPos() throws IOException {

// implementation elided
}

 // implementation elided

 }

However, unlike FSDataInputStream, FSDataOutputStream does not permit seeking. This is

because HDFS allows only sequential writes to an open file or appends to an already written file.

In other words, there is no support for writing to anywhere other than the end of the file, so

there is no value in being able to seek while writing.

Directories

FileSystem provides a method to create a directory:

public boolean mkdirs(Path f) throws IOException

This method creates all of the necessary parent directories if they don’t already exist, just like

the java.io.File’s mkdirs() method. It returns true if the directory (and all parent directories)

was (were) successfully created.

Often, you don’t need to explicitly create a directory, because writing a file by calling create()
will automatically create any parent directories.

Querying the Filesystem

File metadata: FileStatus

An important feature of any filesystem is the ability to navigate its directory structure and

retrieve information about the files and directories that it stores. The FileStatus class

encapsulates filesystem metadata for files and directories, including file length, block size,

replication, modification time, ownership, and permission information.

The method getFileStatus() on FileSystem provides a way of getting a FileStatus object

for a single file or directory. Example 3-5 shows an example of its use.

Example 3-5. Demonstrating file status information

public class ShowFileStatusTest {

 private MiniDFSCluster cluster; // use an in-process HDFS cluster for testing
 private FileSystem fs;

 @Before
 public void setUp() throws IOException {
 Configuration conf = new Configuration();
 if (System.getProperty("test.build.data") == null) {
 System.setProperty("test.build.data", "/tmp");
 }
 cluster = new MiniDFSCluster(conf, 1, true, null);
 fs = cluster.getFileSystem();
 OutputStream out = fs.create(new Path("/dir/file"));
 out.write("content".getBytes("UTF-8"));
 out.close();
}

@After
public void tearDown() throws IOException {
 if (fs != null) { fs.close(); }
 if (cluster != null) { cluster.shutdown(); }
}

@Test(expected = FileNotFoundException.class)
public void throwsFileNotFoundForNonExistentFile() throws IOException {
 fs.getFileStatus(new Path("no-such-file"));
}

@Test
public void fileStatusForFile() throws IOException {
 Path file = new Path("/dir/file");
 FileStatus stat = fs.getFileStatus(file);
 assertThat(stat.getPath().toUri().getPath(), is("/dir/file"));
 assertThat(stat.isDir(), is(false));
 assertThat(stat.getLen(), is(7L));
 assertThat(stat.getModificationTime(),
 is(lessThanOrEqualTo(System.currentTimeMillis())));
 assertThat(stat.getReplication(), is((short) 1));
 assertThat(stat.getBlockSize(), is(64 * 1024 * 1024L));
 assertThat(stat.getOwner(), is("tom"));
 assertThat(stat.getGroup(), is("supergroup"));
 assertThat(stat.getPermission().toString(), is("rw-r--r--"));
}

@Test
public void fileStatusForDirectory() throws IOException {
 Path dir = new Path("/dir");
 FileStatus stat = fs.getFileStatus(dir);
 assertThat(stat.getPath().toUri().getPath(), is("/dir"));
 assertThat(stat.isDir(), is(true));
 assertThat(stat.getLen(), is(0L));
 assertThat(stat.getModificationTime(),
 is(lessThanOrEqualTo(System.currentTimeMillis())));
 assertThat(stat.getReplication(), is((short) 0));
 assertThat(stat.getBlockSize(), is(0L));
 assertThat(stat.getOwner(), is("tom"));
 assertThat(stat.getGroup(), is("supergroup"));
 assertThat(stat.getPermission().toString(), is("rwxr-xr-x"));
 }

}

If no file or directory exists, a FileNotFoundException is thrown. However, if you are

interested only in the existence of a file or directory, the exists() method on FileSystem is
more convenient:

public boolean exists(Path f) throws IOException

Listing files

Finding information on a single file or directory is useful, but you also often need to be able to list

the contents of a directory. That’s what FileSystem’s listStatus() methods are for:

public FileStatus[] listStatus(Path f) throws IOException
public FileStatus[] listStatus(Path f, PathFilter filter) throws IOException
public FileStatus[] listStatus(Path[] files) throws IOException
public FileStatus[] listStatus(Path[] files, PathFilter filter) throws IOException

When the argument is a file, the simplest variant returns an array of FileStatus objects of

length 1. When the argument is a directory, it returns zero or more FileStatus objects
representing the files and directories contained in the directory.

Overloaded variants allow a PathFilter to be supplied to restrict the files and directories to

match. Finally, if you specify an array of paths, the result is a shortcut for calling the equivalent

single-path listStatus method for each path in turn and accumulating the FileStatus

object arrays in a single array. This can be useful for building up lists of input files to process

from distinct parts of the filesystem tree. Example 3-6 is a simple demonstration of this idea.

Note the use of stat2Paths() in FileUtil for turning an array of FileStatus objects to an

array of Path objects.

Example 3-6. Showing the file statuses for a collection of paths in a Hadoop filesystem

public class ListStatus {

 public static void main(String[] args) throws Exception {
 String uri = args[0];
 Configuration conf = new Configuration();
 FileSystem fs = FileSystem.get(URI.create(uri), conf);

 Path[] paths = new Path[args.length];
 for (int i = 0; i < paths.length; i++) {
 paths[i] = new Path(args[i]);
 }

 FileStatus[] status = fs.listStatus(paths);
 Path[] listedPaths = FileUtil.stat2Paths(status);
 for (Path p : listedPaths) {
 System.out.println(p);
 }
 }
}

We can use this program to find the union of directory listings for a collection of paths:

% hadoop ListStatus hdfs://localhost/ hdfs://localhost/user/tom

hdfs://localhost/user
hdfs://localhost/user/tom/books
 hdfs://localhost/user/tom/quangle.txt

PathFilter
PathFilter is the equivalent of java.io.FileFilter for Path objects rather than File
objects.

Example 3-7 shows a PathFilter for excluding paths that match a regular expression.

Example 3-7. A PathFilter for excluding paths that match a regular expression

public class RegexExcludePathFilter implements PathFilter {
 private final String regex;

 public RegexExcludePathFilter(String regex) {
 this.regex = regex;
}

public boolean accept(Path path) {
 return !path.toString().matches(regex);
 }
}

file:///C:/Users/student/Desktop/VAC-DataAnalytics/BigDataAnalytics/BigDataRefText3.docx%23_bookmark282
file:///C:/Users/student/Desktop/VAC-DataAnalytics/BigDataAnalytics/BigDataRefText3.docx%23_bookmark294

The filter passes only those files that don’t match the regular expression. After the glob picks out

an initial set of files to include, the filter is used to refine the results. For example:

fs.globStatus(new Path("/2007/*/*"), new RegexExcludeFilter("^.*/2007/12/31$"))

will expand to /2007/12/30.

Filters can act only on a file’s name, as represented by a Path. They can’t use a file’s properties,

such as creation time, as the basis of the filter.

Deleting Data

Use the delete() method on FileSystem to permanently remove files or directories:

public boolean delete(Path f, boolean recursive) throws IOException

If f is a file or an empty directory, the value of recursive is ignored. A nonempty directory is

deleted, along with its contents, only if recursive is true (otherwise, an IOException is

thrown).

Data Flow

Anatomy of a File Read

To get an idea of how data flows between the client interacting with HDFS, the name- node, and

the datanodes, consider Figure 3-2, which shows the main sequence of events when reading a file.

The client opens the file it wishes to read by calling open() on the FileSystem object, which for

HDFS is an instance of DistributedFileSystem (step 1 in Figure 3-2). DistributedFileSystem calls

the namenode, using RPC, to determine the locations of the blocks for the first few blocks in the

file (step 2). For each block, the namenode returns the addresses of the datanodes that have a

copy of that block. Furthermore, the datanodes are sorted according to their proximity to the

client. If the client is itself a datanode (in the case of a MapReduce task, for instance), the client

will read from the local datanode if that datanode hosts a copy of the block.

The DistributedFileSystem returns an FSDataInputStream (an input stream that supports
file seeks) to the client for it to read data from FSDataInputStream in turn wraps a
DFSInputStream, which manages the datanode and namenode I/O.

The client then calls read() on the stream (step 3). DFSInputStream, which has stored the

datanode addresses for the first few blocks in the file, then connects to the first (closest)

datanode for the first block in the file. Data is streamed from the datanode back to the client,

which calls read() repeatedly on the stream (step 4). When the end of the block is reached,

DFSInputStream will close the connection to the datanode, then find the best datanode for

the next block (step 5). This happens transparently to the client, which from its point of view

is just reading a continuous stream.

Blocks are read in order, with the DFSInputStream opening new connections to datanodes as

the client reads through the stream. It will also call the namenode to retrieve the datanode

locations for the next batch of blocks as needed. When the client has finished reading, it

calls close() on the FSDataInputStream (step 6).

file:///C:/Users/student/Desktop/VAC-DataAnalytics/BigDataAnalytics/BigDataRefText3.docx%23_bookmark306
file:///C:/Users/student/Desktop/VAC-DataAnalytics/BigDataAnalytics/BigDataRefText3.docx%23_bookmark306

During reading, if the DFSInputStream encounters an error while communicating with a

datanode, it will try the next closest one for that block. It will also remember datanodes that

have failed so that it doesn’t needlessly retry them for later blocks. The DFSInputStream also

verifies checksums for the data transferred to it from the datanode. If a corrupted block is found,

it is reported to the namenode before the DFSInputStream attempts to read a replica of the

block from another datanode.

One important aspect of this design is that the client contacts datanodes directly to retrieve

data and is guided by the namenode to the best datanode for each block. This design allows

HDFS to scale to a large number of concurrent clients because the data traffic is spread across

all the datanodes in the cluster. Meanwhile, the namenode merely has to service block location

requests (which it stores in memory, making them very efficient) and does not, for example,

serve data, which would quickly become a bottleneck as the number of clients grew.

Anatomy of a File Write

Next we’ll look at how files are written to HDFS.

We’re going to consider the case of creating a new file, writing data to it, then closing the file.

See Figure 3-4.

The client creates the file by calling create() on DistributedFileSystem (step 1 in Figure 3-4).

DistributedFileSystem makes an RPC call to the namenode to create a new file in the

filesystem’s namespace, with no blocks associated with it (step 2). The namenode performs

various checks to make sure the file doesn’t already exist and that the client has the right

permissions to create the file. If these checks pass, the namenode makes a record of the new

file; otherwise, file creation fails and the client is thrown an IOException. The

DistributedFileSystem returns an FSDataOutputStream for the client to start writing data

to. Just as in the read case, FSDataOutputStream wraps a DFSOutputStream, which handles

communication with the datanodes and namenode.

file:///C:/Users/student/Desktop/VAC-DataAnalytics/BigDataAnalytics/BigDataRefText3.docx%23_bookmark320
file:///C:/Users/student/Desktop/VAC-DataAnalytics/BigDataAnalytics/BigDataRefText3.docx%23_bookmark320

As the client writes data (step 3), DFSOutputStream splits it into packets, which it writes to an

internal queue, called the data queue. The data queue is consumed by the Data Streamer, which

is responsible for asking the namenode to allocate new blocks by picking a list of suitable

datanodes to store the replicas. The list of datanodes forms a pipeline, and here we’ll assume the

replication level is three, so there are three nodes in the pipeline. The DataStreamer streams the

packets to the first datanode in the pipeline, which stores the packet and forwards it to the

second datanode in the pipeline. Similarly, the second datanode stores the packet and forwards

it to the third (and last) datanode in the pipeline (step 4).

DFSOutputStream also maintains an internal queue of packets that are waiting to be

acknowledged by datanodes, called the ack queue. A packet is removed from the ack queue only

when it has been acknowledged by all the datanodes in the pipeline (step 5).

If a datanode fails while data is being written to it, then the following actions are taken, which are

transparent to the client writing the data. First, the pipeline is closed, and any packets in the ack

queue are added to the front of the data queue so that datanodes that are downstream from the

failed node will not miss any packets. The current block on the good datanodes is given a new

identity, which is communicated to the namenode, so that the partial block on the failed

datanode will be deleted if the failed datanode recovers later on. The failed datanode is removed

from the pipeline, and the remainder of the block’s data is written to the two good datanodes in

the pipeline. The namenode notices that the block is under-replicated, and it arranges for a

further replica to be created on another node. Subsequent blocks are then treated as normal.

It’s possible, but unlikely, that multiple datanodes fail while a block is being written. As long as

dfs.replication.min replicas (which default to one) are written, the write will succeed, and

the block will be asynchronously replicated across the cluster until its target replication factor

is reached (dfs.replication, which defaults to three).

When the client has finished writing data, it calls close() on the stream (step 6). This action

flushes all the remaining packets to the datanode pipeline and waits for

acknowledgements before contacting the namenode to signal that the file is complete (step 7).

The namenode already knows which blocks the file is made up of (via Data Streamer asking for

block allocations), so it only has to wait for blocks to be minimally replicated before returning

successfully.

Coherency Model

A coherency model for a filesystem describes the data visibility of reads and writes for a file. After

creating a file, it is visible in the filesystem namespace:

Path p = new Path("p");

fs.create(p);

assertThat(fs.exists(p), is(true));

However, any content written to the file is not guaranteed to be visible, even if the stream is

flushed. So the file appears to have a length of zero:

Path p = new Path("p");
OutputStream out = fs.create(p);
out.write("content".getBytes("UTF-8"));
out.flush();
assertThat(fs.getFileStatus(p).getLen(), is(0L));

Once more than a block’s worth of data has been written, the first block will be visible to new

readers. This is true of subsequent blocks, too: it is always the current block being written that

is not visible to other readers.

HDFS provides a method for forcing all buffers to be synchronized to the datanodes via the sync()

method on FSDataOutputStream. After a successful return from sync(), HDFS guarantees that

the data written up to that point in the file has reached all the datanodes in the write pipeline

and is visible to all new readers:

Path p = new Path("p");
FSDataOutputStream out = fs.create(p);
out.write("content".getBytes("UTF-8"));
out.flush();
out.sync();
assertThat(fs.getFileStatus(p).getLen(), is(((long) "content".length())));

This behavior is similar to the fsync system call in POSIX that commits buffered data for a file

descriptor. For example, using the standard Java API to write a local file, we are guaranteed to

see the content after flushing the stream and synchronizing:

FileOutputStream out = new FileOutputStream(localFile);
out.write("content".getBytes("UTF-8"));

out.flush(); // flush to operating system
out.getFD().sync(); // sync to disk
assertThat(localFile.length(), is(((long) "content".length())));

Closing a file in HDFS performs an implicit sync(), too:

Path p = new Path("p");
OutputStream out = fs.create(p);
out.write("content".getBytes("UTF-8"));
out.close();
assertThat(fs.getFileStatus(p).getLen(), is(((long) "content".length())));

Consequences for application design

This coherency model has implications for the way you design applications. With no calls to

sync(), you should be prepared to lose up to a block of data in the event of client or system

failure. For many applications, this is unacceptable, so you should call sync() at suitable points,

such as after writing a certain number of records or number of bytes. Though the sync()

operation is designed to not unduly tax HDFS, it does have some overhead, so there is a trade-

off between data robustness and throughput. What constitutes an acceptable trade-off is

application-dependent, and suitable values can be selected after measuring your application’s

performance with different sync() frequencies.

Parallel Copying with distcp
The HDFS access patterns that we have seen so far focus on single-threaded access. It’s possible

to act on a collection of files but for efficient parallel processing of these files, you would have to

write a program yourself. Hadoop comes with a useful program called distcp for copying large

amounts of data to and from Hadoop filesystems in parallel.

The canonical use case for distcp is for transferring data between two HDFS clusters. If the

clusters are running identical versions of Hadoop, the hdfs scheme is appropriate:

% hadoop distcp hdfs://namenode1/foo hdfs://namenode2/bar

This will copy the /foo directory (and its contents) from the first cluster to the /bar directory

on the second cluster, so the second cluster ends up with the directory structure /bar/foo. If

/bar doesn’t exist, it will be created first. You can specify multiple source paths, and all will be

copied to the destination. Source paths must be absolute.

By default, distcp will skip files that already exist in the destination, but they can be overwritten

by supplying the -overwrite option. You can also update only the files that have changed using

the -update option.

There are more options to control the behavior of distcp, including ones to preserve file

attributes, ignore failures, and limit the number of files or total data copied. Run it with no options

to see the usage instructions.

distcp is implemented as a MapReduce job where the work of copying is done by the maps that

run in parallel across the cluster. There are no reducers. Each file is copied by a single map, and

distcp tries to give each map approximately the same amount of data by bucketing files into

roughly equal allocations.

The number of maps is decided as follows. Because it’s a good idea to get each map to copy a

reasonable amount of data to minimize overheads in task setup, each map copies at least 256 MB

(unless the total size of the input is less, in which case one map handles it all). For example, 1 GB

of files will be given four map tasks. When the data size is very large, it becomes necessary to

limit the number of maps in order to limit bandwidth and cluster utilization. By default, the

maximum number of maps is 20 per (tasktracker) cluster node. For example, copying 1,000 GB of

files to a 100-node cluster will allocate 2,000 maps (20 per node), so each will copy 512 MB on

average. This can be reduced by specifying the -m argument to distcp. For example, -m 1000

would allocate 1,000 maps, each copying 1 GB on average.

When you try to use distcp between two HDFS clusters that are running different versions, the

copy will fail if you use the hdfs protocol because the RPC systems are incompatible. To remedy

this, you can use the read-only HTTP-based HFTP filesystem to read from the source. The job

must run on the destination cluster so that the HDFS RPC versions are compatible. To repeat the

previous example using HFTP:

 % hadoop distcp hftp://namenode1:50070/foo hdfs://namenode2/bar

Note that you need to specify the namenode’s web port in the source URI. This is determined

by the dfs.http.address property, which defaults to 50070.

Using the newer webhdfs protocol (which replaces hftp), it is possible to use HTTP for both the

source and destination clusters without hitting any wire incompatibility problems.

% hadoop distcp webhdfs://namenode1:50070/foo webhdfs://namenode2:50070/bar

Another variant is to use an HDFS HTTP proxy as the distcp source or destination, which has the

advantage of being able to set firewall and bandwidth controls.

Keeping an HDFS Cluster Balanced
When copying data into HDFS, it’s important to consider cluster balance. HDFS works best when

the file blocks are evenly spread across the cluster, so you want to ensure that distcp doesn’t

disrupt this. Going back to the 1,000 GB example, by specifying -m 1, a single map would do the

copy, which—apart from being slow and not using the cluster resources efficiently—would

mean that the first replica of each block would reside on the node running the map (until the

disk filled up). The second and third replicas would be spread across the cluster, but this one

node would be unbalanced. By having more maps than nodes in the cluster, this problem is

avoided. For this reason, it’s best to start by running distcp with the default of 20 maps per

node.

However, it’s not always possible to prevent a cluster from becoming unbalanced. Perhaps you

want to limit the number of maps so that some of the nodes can be used by other jobs. In this

case, you can use the balancer tool to subsequently even out the block distribution across the

cluster.

Hadoop Archives
A Hadoop Archive is created from a collection of files using the archive tool. The tool runs a MapReduce

job to process the input files in parallel, so to run it, you need a running MapReduce cluster to use it. Here

are some files in HDFS that we would like to archive:

% hadoop fs -lsr /my/files
-rw-r--r-- 1 tom supergroup 1 2009-04-09 19:13 /my/files/a
drwxr-xr-x - tom supergroup 0 2009-04-09 19:13 /my/files/dir
-rw-r--r-- 1 tom supergroup 1 2009-04-09 19:13 /my/files/dir/b

Now we can run the archive command:

% hadoop archive -archiveName files.har /my/files /my

The first option is the name of the archive, here files.har. HAR files always have a .har extension,

which is mandatory for reasons we shall see later. Next come the files to put in the archive. Here

we are archiving only one source tree, the files in /my/files in HDFS, but the tool accepts multiple

source trees. The final argument is the output directory for the HAR file. Let’s see what the

archive has created:

% hadoop fs -ls /my
Found 2 items
drwxr-xr-x - tom supergroup 0 2009-04-09 19:13 /my/f
drwxr-xr-x - tom supergroup 0 2009-04-09 19:13 /my/files.har
% hadoop fs -ls /my/files.har
Found 3 items
-rw-r--r-- 10 tom supergroup 165 2009-04-09 19:13 /my/files.har/_index
-rw-r--r-- 10 tom supergroup 23 2009-04-09 19:13 /my/files.har/_masterindex
-rw-r--r-- 1 tom supergroup 2 2009-04-09 19:13 /my/files.har/part-0

The directory listing shows what a HAR file is made of: two index files and a collection of part files.

The part files contain the contents of a number of the original files concatenated together, and

the indexes make it possible to look up the part file that an archived file is contained in, as well

as its offset and length. All these details are hidden from the application, however, which uses

the har URI scheme to interact with HAR files, using a HAR filesystem that is layered on top of

the underlying filesystem (HDFS in this case). The following command recursively lists the files in

the archive:

% hadoop fs -lsr har:///my/files.har
drw-r--r-- - tom supergroup 0 2009-04-09 19:13 /my/files.har/my
drw-r--r-- - tom supergroup 0 2009-04-09 19:13 /my/files.har/my/files
-rw-r--r-- 10 tom supergroup 1 2009-04-09 19:13 /my/files.har/my/files/a
drw-r--r-- - tom supergroup 0 2009-04-09 19:13 /my/files.har/my/files/dir
-rw-r--r-- 10 tom supergroup 1 2009-04-09 19:13 /my/files.har/my/files/dir/b

This is quite straightforward when the filesystem that the HAR file is on is the default filesystem.

On the other hand, if you want to refer to a HAR file on a different filesystem, you need to use a

different form of the path URI. These two commands have the same effect, for example:
% hadoop fs -lsr har:///my/files.har/my/files/dir
% hadoop fs -lsr har://hdfs-localhost:8020/my/files.har/my/files/dir

Notice in the second form that the scheme is still har to signify a HAR filesystem, but the

authority is hdfs to specify the underlying filesystem’s scheme, followed by a dash and the HDFS

host (localhost) and port (8020). We can now see why HAR files must have a .har extension. The

HAR filesystem translates the har URI into a URI for the underlying filesystem by looking at the

authority and path up to and including the component with the .har extension. In this case, it

is hdfs://localhost:8020/my/files.har. The remaining part of the path is the path of the file in

the archive: /my/files/dir.

To delete a HAR file, you need to use the recursive form of delete because from the underlying

filesystem’s point of view, the HAR file is a directory:

% hadoop fs -rmr /my/files.har

**

BMS INSTITUTE OF TECHNOLOGY & MANAGEMENT
Yelahanka, Bangalore-64

Department of MCA

Big Data Analytics – Lecture Notes

Module 5

Note: Parts of the notes in grey colour are just to understand the structure and not for
strictly memorizing to present in exam.

What is MapReduce?

MapReduce is a programming model for data processing. Hadoop can run MapReduce programs

written in various languages. Same program can be expressed in Java, Ruby, Python, and C++.

MapReduce programs are inherently parallel, thus putting very large-scale data analysis into the

hands of anyone with enough machines at their disposal.

A Weather Dataset

For our example, we will write a program that mines weather data. Weather sensors collect data

every hour at many locations across the globe and gather a large volume of log data, which is a

good candidate for analysis with MapReduce because it is semi- structured and record-oriented.

Data Format

The data we will use is from the National Climatic Data Center. The data is stored using a line-

oriented ASCII format, in which each line is a record. The format supports a rich set of

meteorological elements, many of which are optional or with variable data lengths. For

simplicity, we focus on the basic elements, such as temperature, which are always present and

are of fixed width.

Example 2-1 shows a sample line with some of the salient fields highlighted. The line has been

split into multiple lines to show each field; in the real file, fields are packed into one line with no

delimiters.

Example 2-1. Format of a National Climate Data Center record

0057
332130 # USAF weather station identifier
99999 # WBAN weather station identifier

19500101 # observation date
0300 # observation time
4
+51317 # latitude (degrees x 1000)
+028783 # longitude (degrees x 1000)
FM-12
+0171 # elevation (meters)
99999
V020
320 # wind direction (degrees)
1 # quality code
N
0072
1
00450 # sky ceiling height (meters)
1 # quality code
C
N
010000 # visibility distance (meters)
1 # quality code
N
9
-0128 # air temperature (degrees Celsius x 10)
1 # quality code
-0139 # dew point temperature (degrees Celsius x 10)
1 # quality code
10268 # atmospheric pressure (hectopascals x 10)
1 # quality code

Datafiles are organized by date and weather station. There is a directory for each year from 1901

to 2001, each containing a gzipped file for each weather station with its readings for that year.

For example, here are the first entries for 1990:

% ls raw/1990 | head
010010-99999-1990.gz
010014-99999-1990.gz
010015-99999-1990.gz
010016-99999-1990.gz
010017-99999-1990.gz
010030-99999-1990.gz
010040-99999-1990.gz
010080-99999-1990.gz
010100-99999-1990.gz
010150-99999-1990.gz

Since there are tens of thousands of weather stations, the whole dataset is made up of a large
number of relatively small files. It’s generally easier and more efficient to process a smaller number
of relatively large files, so the data was preprocessed so that each year’s readings were
concatenated into a single file.

Analyzing the Data with Unix Tools

What’s the highest recorded global temperature for each year in the dataset? We will answer

this first without using Hadoop, as this information will provide a performance baseline and a

useful means to check our results. The classic tool for processing line-oriented data is awk. If we

write a script, the script loops through the compressed year files, first printing the year, and

then processing each file using awk. The awk script extracts two fields from the data: the air

temperature and the quality code. Next, a test is applied to see whether the temperature is

valid (the value 9999 signifies a missing value in the NCDC dataset) and whether the quality

code indicates that the reading is not suspect or erroneous. If the reading is OK, the value is

compared with the maximum value seen so far, which is updated if a new maximum is found.

The execution comes to an end after all the lines in the file have been processed, and it prints

the maximum value.

The temperature values in the source file are scaled by a factor of 10, so this works out as a

maximum temperature of 31.7°C for 1901. The complete run for the century will take 42 minutes

in one run on a single EC2 High-CPU Extra Large Instance.

To speed up the processing, we need to run parts of the program in parallel. In theory, this is

straightforward: we could process different years in different processes, using all the available

hardware threads on a machine. There are a few problems with this, however.

First, dividing the work into equal-size pieces isn’t always easy or obvious. In this case, the file size

for different years varies widely, so some processes will finish much earlier than others. Even if

they pick up further work, the whole run is dominated by the longest file. A better approach,

although one that requires more work, is to split the input into fixed-size chunks and assign each

chunk to a process.

Second, combining the results from independent processes may need further processing. In this

case, the result for each year is independent of other years and may be combined by

concatenating all the results and sorting by year. If using the fixed-size chunk approach, the

combination is more delicate. For this example, data for a particular year will typically be split

into several chunks, each processed independently. We’ll end up with the maximum

temperature for each chunk, so the final step is to look for the highest of these maximums for

each year.

Third, you are still limited by the processing capacity of a single machine. If the best time you

can achieve is 20 minutes with the number of processors you have, then that’s it. You can’t make

it go faster. Also, some datasets grow beyond the capacity of a single machine. When we start

using multiple machines, a whole host of other factors come into play, mainly falling into the

category of coordination and reliability. Who runs the overall job? How do we deal with failed

processes?

So, although it’s feasible to parallelize the processing, in practice it’s messy. Using a framework

like Hadoop to take care of these issues is a great help.

Analyzing the Data with Hadoop

To take advantage of the parallel processing that Hadoop provides, we need to express our query

as a MapReduce job. After some local, small-scale testing, we will be able to run it on a cluster of

machines.

Map and Reduce

MapReduce works by breaking the processing into two phases: the map phase and the reduce

phase. Each phase has key-value pairs as input and output, the types of which may be chosen

by the programmer. The programmer also specifies two functions: the map function and the

reduce function.

The input to our map phase is the raw NCDC data. We choose a text input format that gives us

each line in the dataset as a text value. The key is the offset of the beginning of the line from the

beginning of the file, but as we have no need for this, we ignore it. Our map function is simple.

We pull out the year and the air temperature because these are the only fields we are interested

in. In this case, the map function is just a data preparation phase, setting up the data in such a

way that the reducer function can do its work on it: finding the maximum temperature for each

year. The map function is also a good place to drop bad records: here we filter out temperatures

that are missing, suspect, or erroneous.

To visualize the way the map works, consider the following sample lines of input data (some

unused columns have been dropped to fit the page, indicated by ellipses):

0067011990999991950051507004...9999999N9+00001+99999999999...
0043011990999991950051512004...9999999N9+00221+99999999999...
0043011990999991950051518004...9999999N9-00111+99999999999...
0043012650999991949032412004...0500001N9+01111+99999999999...
0043012650999991949032418004...0500001N9+00781+99999999999...

These lines are presented to the map function as the key-value pairs:

(0, 0067011990999991950051507004...9999999N9+00001+99999999999...)
(106, 0043011990999991950051512004...9999999N9+00221+99999999999...)
(212, 0043011990999991950051518004...9999999N9-00111+99999999999...)
(318, 0043012650999991949032412004...0500001N9+01111+99999999999...)
(424, 0043012650999991949032418004...0500001N9+00781+99999999999...)

The keys are the line offsets within the file, which we ignore in our map function. The map

function merely extracts the year and the air temperature (indicated in bold text), and emits

them as its output (the temperature values have been interpreted as integers):

(1950, 0)
(1950, 22)
(1950, −11)
(1949, 111)
(1949, 78)

The output from the map function is processed by the MapReduce framework before being sent

to the reduce function. This processing sorts and groups the key-value pairs by key. So,

continuing the example, our reduce function sees the following input:

(1949, [111, 78])
(1950, [0, 22, −11])

Each year appears with a list of all its air temperature readings. All the reduce function has to do

now is iterate through the list and pick up the maximum reading:

(1949, 111)
(1950, 22)

This is the final output: the maximum global temperature recorded in each year.

The whole data flow is illustrated in Figure 2-1. At the bottom of the diagram is a Unix pipeline,

which mimics the whole MapReduce flow.

Java MapReduce
Having run through how the MapReduce program works, the next step is to express it in code.

We need three things: a map function, a reduce function, and some code to run the job. The

map function is represented by the Mapper class, which declares an abstract map() method.

Example 2-3 shows the implementation of our map method.

Example 2-3. Mapper for the maximum temperature example

import java.io.IOException;

import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;

public class MaxTemperatureMapper
 extends Mapper<LongWritable, Text, Text, IntWritable> {
 private static final int MISSING = 9999;
@Override
public void map(LongWritable key, Text value, Context context)
 throws IOException, InterruptedException {

String line = value.toString();
String year = line.substring(15, 19);
int airTemperature;
if (line.charAt(87) == '+') { // parseInt doesn't like leading plus signs
 airTemperature = Integer.parseInt(line.substring(88, 92));
} else {
 airTemperature = Integer.parseInt(line.substring(87, 92));

}
String quality = line.substring(92, 93);
if (airTemperature != MISSING && quality.matches("[01459]")) {
 context.write(new Text(year), new IntWritable(airTemperature));
 }
 }
}

The Mapper class is a generic type, with four formal type parameters that specify the input key,

input value, output key, and output value types of the map function. For the present example,

the input key is a long integer offset, the input value is a line of text, the output key is a year, and

the output value is an air temperature (an integer). Rather than use built-in Java types, Hadoop

provides its own set of basic types that are optimized for network serialization. These are

found in the org.apache.hadoop.io package. Here we use LongWritable, which corresponds

to a Java Long, Text (like Java String), and IntWritable (like Java Integer).

The map() method is passed a key and a value. We convert the Text value containing the line

of input into a Java String, then use its substring() method to extract the columns we are

interested in.

The map() method also provides an instance of Context to write the output to. In this case, we

write the year as a Text object (since we are just using it as a key), and the temperature is

wrapped in an IntWritable. We write an output record only if the temperature is present and

the quality code indicates the temperature reading is OK.

The reduce function is similarly defined using a Reducer, as illustrated in Example 2-4.

Example 2-4. Reducer for the maximum temperature example

import java.io.IOException;

import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;

public class MaxTemperatureReducer
 extends Reducer<Text, IntWritable, Text, IntWritable> {

@Override
public void reduce(Text key, Iterable<IntWritable> values,
 Context context)
 throws IOException, InterruptedException {

 int maxValue = Integer.MIN_VALUE;
 for (IntWritable value : values) {
 maxValue = Math.max(maxValue, value.get());
 }
 context.write(key, new IntWritable(maxValue));
 }
}

Again, four formal type parameters are used to specify the input and output types, this time for

the reduce function. The input types of the reduce function must match the output types of

the map function: Text and IntWritable. And in this case, the output types of the reduce

function are Text and IntWritable, for a year and its maximum temperature, which we find

by iterating through the temperatures and comparing each with a record of the highest found

so far.

The third piece of code runs the MapReduce job (Example 2-5).

Example 2-5. Application to find the maximum temperature in the weather dataset

import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

public class MaxTemperature {

 public static void main(String[] args) throws Exception {
 if (args.length != 2) {
 System.err.println("Usage: MaxTemperature <input path> <output path>");
 System.exit(-1);
 }

 Job job = new Job();
 job.setJarByClass(MaxTemperature.class);
 job.setJobName("Max temperature");

 FileInputFormat.addInputPath(job, new Path(args[0]));
 FileOutputFormat.setOutputPath(job, new Path(args[1]));

 job.setMapperClass(MaxTemperatureMapper.class);
 job.setReducerClass(MaxTemperatureReducer.class);

 job.setOutputKeyClass(Text.class);
 job.setOutputValueClass(IntWritable.class);

 System.exit(job.waitForCompletion(true) ? 0 : 1);
 }
}

A Job object forms the specification of the job and gives you control over how the job is run.

When we run this job on a Hadoop cluster, we will package the code into a JAR file (which

Hadoop will distribute around the cluster).

Having constructed a Job object, we specify the input and output paths. An input path is

specified by calling the static addInputPath() method on FileInputFormat, and it can be a single

file, a directory (in which case the input forms all the files in that directory), or a file pattern. As

the name suggests, addInputPath() can be called more than once to use input from multiple

paths.

The output path (of which there is only one) is specified by the static setOutput Path()
method on FileOutputFormat. It specifies a directory where the output files from the reducer

functions are written. The directory shouldn’t exist before running the job because Hadoop will
complain and not run the job. This precaution is to prevent data loss.

Next, we specify the map and reduce types to use via the setMapperClass() and

setReducerClass() methods.

The setOutputKeyClass() and setOutputValueClass() methods control the output types for

the map and the reduce functions, which are often the same, as they are in our case. If they are

different, the map output types can be set using the methods setMapOutputKeyClass() and

setMapOutputValueClass().

The input types are controlled via the input format, which we have not explicitly set because

we are using the default TextInputFormat.

After setting the classes that define the map and reduce functions, we are ready to run the job.

The waitForCompletion() method on Job submits the job and waits for it to finish. The method’s

Boolean argument is a verbose flag, so in this case the job writes information about its progress

to the console.

The return value of the waitForCompletion() method is a Boolean indicating success (true)

or failure (false), which we translate into the program’s exit code of 0 or 1.

Scaling Out
You’ve seen how MapReduce works for small inputs; now it’s time look at the data flow for large

inputs. For simplicity, the examples so far have used files on the local filesystem. To scale out, we

need to store the data in a distributed filesystem, typically HDFS. To allow Hadoop to move the

MapReduce computation to each machine hosting a part of the data, the process is as follows:

Data Flow

A MapReduce job is a unit of work that the client wants to be performed: it consists of the input

data, the MapReduce program, and configuration information. Hadoop runs the job by dividing

it into tasks, of which there are two types: map tasks and reduce tasks.

There are two types of nodes that control the job execution process: a jobtracker and a number

of tasktrackers. The jobtracker coordinates all the jobs run on the system by scheduling tasks to

run on tasktrackers. Tasktrackers run tasks and send progress reports to the jobtracker, which

keeps a record of the overall progress of each job. If a task fails, the jobtracker can reschedule it

on a different tasktracker.

Hadoop divides the input to a MapReduce job into fixed-size pieces called input splits, or just

splits. Hadoop creates one map task for each split, which runs the user- defined map function for

each record in the split.

Having many splits means the time taken to process each split is small compared to the time to

process the whole input. So if we are processing the splits in parallel, the processing is better

load-balanced when the splits are small, since a faster machine will be able to process

proportionally more splits over the course of the job than a slower machine. Even if the

machines are identical, failed processes or other jobs running concurrently make load balancing

desirable, and the quality of the load balancing increases as the splits become more fine-grained.

On the other hand, if splits are too small, the overhead of managing the splits and of map task

creation begins to dominate the total job execution time. For most jobs, a good split size tends

to be the size of an HDFS block, 64 MB by default, although this can be changed for the cluster

(for all newly created files) or specified when each file is created.

Hadoop does its best to run the map task on a node where the input data resides in HDFS. This

is called the data locality optimization because it doesn’t use valuable cluster bandwidth.

Sometimes, however, all three nodes hosting the HDFS block replicas for a map task’s input split

are running other map tasks, so the job scheduler will look for a free map slot on a node in the

same rack as one of the blocks. Very occasionally even this is not possible, so an off-rack node is

used, which results in an inter-rack network transfer. The three possibilities are illustrated in

Figure 2-2.

 Figure 2-2. Data-local (a), rack-local (b), and off-rack (c) map tasks

It should now be clear why the optimal split size is the same as the block size: it is the largest size

of input that can be guaranteed to be stored on a single node. If the split spanned two blocks, it

would be unlikely that any HDFS node stored both blocks, so some of the split would have to be

transferred across the network to the node running the map task, which is clearly less efficient

than running the whole map task using local data.

Map tasks write their output to the local disk, not to HDFS because Map output is intermediate

output: it’s processed by reduce tasks to produce the final output, and once the job is complete,

the map output can be thrown away. So storing it in HDFS with replication would be overkill. If

the node running the map task fails before the map output has been consumed by the reduce

task, then Hadoop will automatically rerun the map task on another node to re-create the map

output.

Reduce tasks don’t have the advantage of data locality; the input to a single reduce task is

normally the output from all mappers. In the present example, we have a single reduce task that is

fed by all of the map tasks. Therefore, the sorted map outputs have to be transferred across the

network to the node where the reduce task is running, where they are merged and then passed

to the user-defined reduce function. The output of the reduce is normally stored in HDFS for

reliability. For each HDFS block of the reduce output, the first replica is stored on the local node,

with other replicas being stored on off-rack nodes. Thus, writing the reduce output does

consume network bandwidth, but only as much as a normal HDFS write pipeline consumes.

The whole data flow with a single reduce task is illustrated in Figure 2-3. The dotted boxes

indicate nodes, the light arrows show data transfers on a node, and the heavy arrows show data

transfers between nodes.

 Figure 2-3. MapReduce data flow with a single reduce task

The number of reduce tasks is not governed by the size of the input, but instead is specified

independently.

When there are multiple reducers, the map tasks partition their output, each creating one

partition for each reduce task. There can be many keys (and their associated values) in each

partition, but the records for any given key are all in a single partition. The partitioning can be

controlled by a user-defined partitioning function, but normally the default partitioner—which

buckets keys using a hash function—works very well.

The data flow for the general case of multiple reduce tasks is illustrated in Figure 2-4. This

diagram makes it clear why the data flow between map and reduce tasks is colloquially known

as “the shuffle,” as each reduce task is fed by many map tasks. The shuffle is more complicated

than this diagram suggests, and tuning it can have a big impact on job execution time.

 Figure 2-4. MapReduce data flow with multiple reduce tasks

Finally, it’s also possible to have zero reduce tasks. This can be appropriate when you don’t need

the shuffle because the processing can be carried out entirely in parallel. In this case, the only

off-node data transfer is when the map tasks write to HDFS. This is shown in Fig. 2-5.

Figure 2-5. MapReduce data flow with no reduce tasks

Combiner Functions

Many MapReduce jobs are limited by the bandwidth available on the cluster, so it pays to

minimize the data transferred between map and reduce tasks. Hadoop allows the user to specify

a combiner function to be run on the map output, and the combiner function’s output forms

the input to the reduce function. Because the combiner function is an optimization, Hadoop

does not provide a guarantee of how many times it will call it for a particular map output record,

if at all. In other words, calling the combiner function zero, one, or many times should produce

the same output from the reducer.

The contract for the combiner function constrains the type of function that may be used. This is

best illustrated with an example. Suppose that for the maximum temperature example, readings

for the year 1950 were processed by two maps (because they were in different splits). Imagine

the first map produced the output:

(1950, 0)
(1950, 20)
(1950, 10)

and the second produced:

(1950, 25)
(1950, 15)

The reduce function would be called with a list of all the values:

(1950, [0, 20, 10, 25, 15])

with output:

(1950, 25)

since 25 is the maximum value in the list. We could use a combiner function that, just like the

reduce function, finds the maximum temperature for each map output. The reduce would then

be called with:

(1950, [20, 25])

and the reduce would produce the same output as before. More succinctly, we may express the
function calls on the temperature values in this case as follows:

max(0, 20, 10, 25, 15) = max(max(0, 20, 10), max(25, 15)) = max(20, 25) = 25

Not all functions possess this property. For example, if we were calculating mean temperatures,

we couldn’t use the mean as our combiner function, because:

 mean(0, 20, 10, 25, 15) =14

but:

mean(mean(0, 20, 10), mean(25, 15)) = mean(10, 20) = 15

The combiner function doesn’t replace the reduce function. But it can help cut down the amount

of data shuffled between the mappers and the reducers, and for this reason alone it is always worth

considering whether you can use a combiner function in your MapReduce job.

Specifying a combiner function

Going back to the Java MapReduce program, the combiner function is defined using the Reducer

class, and for this application, it is the same implementation as the reducer function in

MaxTemperatureReducer. The only change we need to make is to set the combiner class on the

Job.

Example 2-7. Application to find the maximum temperature, using a combiner function for efficiency

public class MaxTemperatureWithCombiner {

public static void main(String[] args) throws

Exception { if (args.length != 2) {

System.err.println("Usage: MaxTemperatureWithCombiner <input path> " +
"<output path>");

System.exit(-1);

}

Job job = new Job();
job.setJarByClass(MaxTemperatureWithCombiner.class);
job.setJobName("Max temperature");

FileInputFormat.addInputPath(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));

job.setMapperClass(MaxTemperatureMapper.class);
job.setCombinerClass(MaxTemperatureReducer.class);
job.setReducerClass(MaxTemperatureReducer.class);

job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);

System.exit(job.waitForCompletion(true) ? 0 : 1);

}

}

Running a Distributed MapReduce Job

The same program will run, without alteration, on a full dataset. This is the point of MapReduce:

it scales to the size of your data and the size of your hardware. Here’s one data point: on a 10-node

EC2 cluster running High-CPU Extra Large Instances, the program took six minutes to run.

Hadoop Streaming

Hadoop provides an API to MapReduce that allows you to write your map and reduce functions

in languages other than Java. Hadoop Streaming uses Unix standard streams as the interface

between Hadoop and your program, so you can use any language that can read standard input

and write to standard output to write your MapReduce program.

Streaming is naturally suited for text processing. Map input data is passed over standard input to

your map function, which processes it line by line and writes lines to standard output. A map

output key-value pair is written as a single tab-delimited line. Input to the reduce function is in

the same format—a tab-separated key-value pair—passed over standard input. The reduce

function reads lines from standard input, which the framework guarantees are sorted by key,

and writes its results to standard output.

Hadoop Pipes
Hadoop Pipes is the name of the C++ interface to Hadoop MapReduce. Unlike Streaming, which

uses standard input and output to communicate with the map and reduce code, Pipes uses

sockets as the channel over which the tasktracker communicates with the process running the

C++ map or reduce function. JNI is not used.

We’ll rewrite this chapter’s temperature example in C++, and then we’ll see how to run it

using Pipes. Example 2-12 shows the source code for the map and reduce functions in C++.

Example 2-12. Maximum temperature in C++

#include <algorithm>
#include <limits>
#include <stdint.h>
#include <string>

#include "hadoop/Pipes.hh"
#include "hadoop/TemplateFactory.hh"
#include "hadoop/StringUtils.hh"

class MaxTemperatureMapper : public HadoopPipes::Mapper {
public:
 MaxTemperatureMapper(HadoopPipes::TaskContext& context) {
 }
 void map(HadoopPipes::MapContext& context) { std::string line = context.getInputValue();
 std::string year = line.substr(15, 4); std::string airTemperature = line.substr(87, 5);
 std::string q = line.substr(92, 1);
 if (airTemperature != "+9999" &&
 (q == "0" || q == "1" || q == "4" || q == "5" || q == "9")) {
 context.emit(year, airTemperature);
 }
 }
};

class MapTemperatureReducer : public HadoopPipes::Reducer {
public:
 MapTemperatureReducer(HadoopPipes::TaskContext& context) {
}
void reduce(HadoopPipes::ReduceContext& context) {
 int maxValue = INT_MIN;
 while (context.nextValue()) {

 maxValue = std::max(maxValue, HadoopUtils::toInt(context.getInputValue()));
 }
 context.emit(context.getInputKey(), HadoopUtils::toString(maxValue));
 }
};

int main(int argc, char *argv[]) {
 return HadoopPipes::runTask(HadoopPipes::TemplateFactory<MaxTemperatureMapper,
 MapTemperatureReducer>());
}

The application links against the Hadoop C++ library, which is a thin wrapper for communicating

with the tasktracker child process. The map and reduce functions are defined by extending the

Mapper and Reducer classes defined in the HadoopPipes namespace and providing

implementations of the map() and reduce() methods in each case. These methods take a context

object (of type MapContext or ReduceContext), which provides the means for reading input and

writing output, as well as accessing job configuration information via the JobConf class. The

processing in this example is very similar to the Java equivalent.

Unlike the Java interface, keys and values in the C++ interface are byte buffers represented as

Standard Template Library (STL) strings. This makes the interface simpler, although it does put

a slightly greater burden on the application developer, who has to convert to and from richer

domain-level types. This is evident in MapTemperatureReducer, where we have to convert the

input value into an integer (using a convenience method in HadoopUtils) and then the maximum

value back into a string before it’s written out. In some cases, we can skip the conversion, such

as in MaxTemperatureMapper, where the airTemperature value is never converted to an

integer because it is never processed as a number in the map() method.

The main() method is the application entry point. It calls HadoopPipes::runTask, which

connects to the Java parent process and marshals data to and from the Mapper or Reducer.

The runTask() method is passed a Factory so that it can create instances of the Mapper or

Reducer. Which one it creates is controlled by the Java parent over the socket connection.

There are overloaded template factory methods for setting a combiner, partitioner, record

reader, or record writer.

Compiling and Running

Now we can compile and link our program using the makefile in Example 2-13.

Example 2-13. Makefile for C++ MapReduce program

CC = g++
CPPFLAGS = -m32 -I$(HADOOP_INSTALL)/c++/$(PLATFORM)/include

max_temperature: max_temperature.cpp
 $(CC) $(CPPFLAGS) $< -Wall -L$(HADOOP_INSTALL)/c++/$(PLATFORM)/lib -lhadooppipes \
 -lhadooputils -lpthread -g -O2 -o $@

The makefile expects a couple of environment variables to be set. Apart from HADOOP_INSTALL,

you need to define PLATFORM, which specifies the operating system, architecture, and data

model (e.g., 32- or 64-bit). It is run on a 32-bit Linux system with the following:

% export PLATFORM=Linux-i386-32
% make

On successful completion, you’ll find the max_temperature executable in the current directory.

To run a Pipes job, we need to run Hadoop in pseudodistributed mode (where all the daemons

run on the local machine). Pipes doesn’t run in standalone (local) mode, because it relies on

Hadoop’s distributed cache mechanism, which works only when HDFS is running.

With the Hadoop daemons now running, the first step is to copy the executable to HDFS so that

it can be picked up by tasktrackers when they launch map and reduce tasks:

% hadoop fs -put max_temperature bin/max_temperature

The sample data also needs to be copied from the local filesystem into HDFS:

% hadoop fs -put input/ncdc/sample.txt sample.txt

Now we can run the job. For this, we use the Hadoop pipes command, passing the Uniform

Resource Identifier (URI) of the executable in HDFS using the -program argument:

% hadoop pipes \
 -D hadoop.pipes.java.recordreader=true \
 -D hadoop.pipes.java.recordwriter=true \
 -input sample.txt \
 -output output \
 -program bin/max_temperature

We specify two properties using the -D option: hadoop.pipes.java.recordreader and

hadoop.pipes.java.recordwriter, setting both to true to say that we have not specified a C++

record reader or writer, but that we want to use the default Java ones (which are for text input

and output). Pipes also allows you to set a Java mapper, reducer, combiner, or partitioner.

In fact, you can have a mixture of Java or C++ classes within any one job.

The result is the same as the other versions of the same program that we ran previously.

Developing a MapReduce Application

In this chapter, we look at the practical aspects of developing a MapReduce application in

Hadoop.

Writing a program in MapReduce follows a certain pattern. You start by writing your map and

reduce functions, ideally with unit tests to make sure they do what you expect. Then you write a

driver program to run a job, which can run from your IDE using a small subset of the data to

check that it is working. If it fails, you can use your IDE’s debugger to find the source of the

problem. With this information, you can expand your unit tests to cover this case and improve

your mapper or reducer as appropriate to handle such input correctly.

When the program runs as expected against the small dataset, you are ready to unleash it on a

cluster. Running against the full dataset is likely to expose some more issues, which you can fix

as before, by expanding your tests and mapper or reducer to handle the new cases. Debugging

failing programs in the cluster is a challenge, so we look at some common techniques to make it

easier.

After the program is working, you may wish to do some tuning, first by running through some

standard checks for making MapReduce programs faster and then by doing task profiling.

Profiling distributed programs is not easy, but Hadoop has hooks to aid the process.

Before we start writing a MapReduce program, we need to set up and configure the

development environment. And to do that, we need to learn a bit about how Hadoop does

configuration.

The Configuration API

Components in Hadoop are configured using Hadoop’s own configuration API. An instance

of the Configuration class (found in the org.apache.hadoop.conf package) represents a

collection of configuration properties and their values. Each property is named by a String,

and the type of a value may be one of several types, including Java primitives such as

boolean, int, long, and float, other useful types such as String, Class, and java.io.File,

and collections of Strings.

Configurations read their properties from resources—XML files with a simple structure for

defining name-value pairs. See Example 5-1.

Example 5-1. A simple configuration file, configuration-1.xml

<?xml version="1.0"?>
<configuration>
 <property>
 <name>color</name>
 <value>yellow</value>
 <description>Color</description>
 </property>

 <property>
 <name>size</name>
 <value>10</value>

file:///C:/Users/student/Desktop/VAC-DataAnalytics/BigDataAnalytics/BigDataRefText3.docx%23_bookmark738

 <description>Size</description>
 </property>

 <property>
 <name>weight</name>
 <value>heavy</value>
 <final>true</final>
 <description>Weight</description>
 </property>

 <property>
 <name>size-weight</name>
 <value>${size},${weight}</value>
 <description>Size and weight</description>
 </property>
</configuration>

Assuming this configuration file is in a file called configuration-1.xml, we can access its properties

using a piece of code like this:

 Configuration conf = new Configuration();

conf.addResource("configuration-1.xml");
assertThat(conf.get("color"), is("yellow"));
assertThat(conf.getInt("size", 0), is(10));
assertThat(conf.get("breadth", "wide"), is("wide"));

There are a couple of things to note: type information is not stored in the XML file; instead,

properties can be interpreted as a given type when they are read. Also, the get() methods

allow you to specify a default value, which is used if the property is not defined in the XML file,

as in the case of breadth here.

Combining Resources
Things get interesting when more than one resource is used to define a configuration. This is

used in Hadoop to separate out the default properties for the system, defined internally in a file

called core-default.xml, from the site-specific overrides in core- site.xml. The file in Example 5-2

defines the size and weight properties.

Example 5-2. A second configuration file, configuration-2.xml

<?xml version="1.0"?>
<configuration>
 <property>
 <name>size</name>
 <value>12</value>
 </property>

 <property>
 <name>weight</name>
 <value>light</value>
</property>
</configuration>

file:///C:/Users/student/Desktop/VAC-DataAnalytics/BigDataAnalytics/BigDataRefText3.docx%23_bookmark743
file:///C:/Users/student/Desktop/VAC-DataAnalytics/BigDataAnalytics/BigDataRefText3.docx%23_bookmark743

Resources are added to a Configuration in order:

Configuration conf = new Configuration();
conf.addResource("configuration-1.xml");
conf.addResource("configuration-2.xml");

Properties defined in resources that are added later override the earlier definitions. So the size

property takes its value from the second configuration file, configuration-2.xml:

assertThat(conf.getInt("size", 0), is(12));

However, properties that are marked as final cannot be overridden in later definitions. The

weight property is final in the first configuration file, so the attempt to override it in the second

fails, and it takes the value from the first:

assertThat(conf.get("weight"), is("heavy"));

Attempting to override final properties usually indicates a configuration error, so this results in

a warning message being logged to aid diagnosis. Administrators mark properties as final in the

daemon’s site files that they don’t want users to change in their client-side configuration files or

job submission parameters.

Variable Expansion

Configuration properties can be defined in terms of other properties, or system properties.

For example, the property size-weight in the first configuration file is defined as

${size},${weight}, and these properties are expanded using the values found in the

configuration:

assertThat(conf.get("size-weight"), is("12,heavy"));

System properties take priority over properties defined in resource files:

System.setProperty("size", "14");
assertThat(conf.get("size-weight"), is("14,heavy"));

This feature is useful for overriding properties on the command line by using

-Dproperty=value JVM arguments.

Note that although configuration properties can be defined in terms of system properties, unless

system properties are redefined using configuration properties, they are not accessible through

the configuration API. Hence:

System.setProperty("length", "2");
assertThat(conf.get("length"), is((String) null));

Setting Up the Development Environment
The first step is to create a project so you can build MapReduce programs and run them in local
(standalone) mode from the command line or within your IDE. The Maven POM in Example 5-3
shows the dependencies needed for building and testing Map- Reduce programs.

Example 5-3. A Maven POM for building and testing a MapReduce application

<project>

 <modelVersion>4.0.0</modelVersion>
 <groupId>com.hadoopbook</groupId>
 <artifactId>hadoop-book-mr-dev</artifactId>
 <version>3.0</version>
 <properties>
 <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
 <project.reporting.outputEncoding>UTF-8</project.reporting.outputEncoding>
 </properties>
 <dependencies>
 <!-- Hadoop main artifact -->
 <dependency>
 <groupId>org.apache.hadoop</groupId>
 <artifactId>hadoop-core</artifactId>
 <version>1.0.0</version>
 </dependency>
 <!-- Unit test artifacts -->
 <dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>4.10</version>
 <scope>test</scope>
 </dependency>
 <dependency>
 <groupId>org.hamcrest</groupId>
 <artifactId>hamcrest-all</artifactId>
 <version>1.1</version>
 <scope>test</scope>
 </dependency>
 <dependency>
 <groupId>org.apache.mrunit</groupId>
 <artifactId>mrunit</artifactId>
 <version>0.8.0-incubating</version>
 <scope>test</scope>
 </dependency>
 <!-- Hadoop test artifacts for running mini clusters -->
 <dependency>
 <groupId>org.apache.hadoop</groupId>
 <artifactId>hadoop-test</artifactId>
 <version>1.0.0</version>
 <scope>test</scope>
 </dependency>
 <!-- Missing dependency for running mini clusters -->
 <dependency>
 <groupId>com.sun.jersey</groupId>
 <artifactId>jersey-core</artifactId>
 <version>1.8</version>
 <scope>test</scope>
 </dependency>
 </dependencies>
 <build>
 <finalName>hadoop-examples</finalName>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-compiler-plugin</artifactId>
 <version>2.3.2</version>
 <configuration>

 <source>1.6</source>
 <target>1.6</target>
 </configuration>
 </plugin>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-jar-plugin</artifactId>
 <version>2.4</version>
 <configuration>
 <outputDirectory>${basedir}</outputDirectory>
 </configuration>
 </plugin>
 </plugins>
 </build>
</project>

The dependencies section is the interesting part of the POM. For building MapReduce jobs you

only need to have the hadoop-core dependency, which contains all the Hadoop classes. For

running unit tests we use junit, as well as a couple of helper libraries: hamcrest-all provides

useful matchers for writing test assertions, and mrunit is used for writing MapReduce tests.

The hadoop-test library contains the “mini-” clusters that are useful for testing with Hadoop

clusters running in a single JVM.

Many IDEs can read Maven POMs directly, so you can just point them at the directory containing

the pom.xml file and start writing code. Alternatively, you can use Maven to generate

configuration files for your IDE. For example, the following creates Eclipse configuration files so

you can import the project into Eclipse:

% mvn eclipse:eclipse -DdownloadSources=true -DdownloadJavadocs=true

Managing Configuration
When developing Hadoop applications, it is common to switch between running the application

locally and running it on a cluster. In fact, you may have several clusters you work with, or you

may have a local “pseudodistributed” cluster that you like to test on (a pseudodistributed cluster

is one whose daemons all run on the local machine).

One way to accommodate these variations is to have Hadoop configuration files containing the

connection settings for each cluster you run against and specify which one you are using when

you run Hadoop applications or tools. As a matter of best practice, it’s recommended to keep

these files outside Hadoop’s installation directory tree, as this makes it easy to switch between

Hadoop versions without duplicating or losing settings.

Let us sssume the existence of a directory called conf that contains three configuration files:

hadoop-local.xml, hadoop-localhost.xml, and hadoop-cluster.xml. Note that there is nothing

special about the names of these files; they are just convenient ways to package up some

configuration settings.

The hadoop-local.xml file contains the default Hadoop configuration for the default filesystem

and the jobtracker:

<?xml version="1.0"?>
<configuration>

 <property>
 <name>fs.default.name</name>
 <value>file:///</value>
 </property>

 <property>
 <name>mapred.job.tracker</name>
 <value>local</value>
 </property>

</configuration>

The settings in hadoop-localhost.xml point to a namenode and a jobtracker both running on

localhost:

<?xml version="1.0"?>
<configuration>

 <property>
 <name>fs.default.name</name>
 <value>hdfs://localhost/</value>
 </property>

 <property>
 <name>mapred.job.tracker</name>
 <value>localhost:8021</value>
 </property>

</configuration>

Finally, hadoop-cluster.xml contains details of the cluster’s namenode and jobtracker addresses.

In practice, you would name the file after the name of the cluster, rather than “cluster” as we

have here:
<?xml version="1.0"?>
<configuration>

 <property>
 <name>fs.default.name</name>
 <value>hdfs://namenode/</value>
 </property>

 <property>
 <name>mapred.job.tracker</name>
 <value>jobtracker:8021</value>
 </property>

</configuration

You can add other configuration properties to these files as needed. For example, if you wanted

to set your Hadoop username for a particular cluster, you could do it in the appropriate file.

GenericOptionsParser, Tool, and ToolRunner
Hadoop comes with a few helper classes for making it easier to run jobs from the command line.
GenericOptionsParser is a class that interprets common Hadoop command-line options and sets
them on a Configuration object for your application to use as desired. You don’t usually use
GenericOptionsParser directly, as it’s more convenient to implement the Tool interface and run
your application with the ToolRunner, which uses GenericOptionsParser internally:

public interface Tool extends Configurable {
 int run(String [] args) throws Exception;

 }

Example 5-4 shows a very simple implementation of Tool that prints the keys and values of all the

properties in the Tool’s Configuration object.

Example 5-4. An example Tool implementation for printing the properties in a Configuration

public class ConfigurationPrinter extends Configured implements Tool {

static {

Configuration.addDefaultResource("hdfs-default.xml");
Configuration.addDefaultResource("hdfs-site.xml");
Configuration.addDefaultResource("mapred-default.xml");
Configuration.addDefaultResource("mapred-site.xml");

}

@Override

public int run(String[] args) throws Exception {
Configuration conf = getConf();

for (Entry<String, String> entry: conf) {
System.out.printf("%s=%s\n", entry.getKey(), entry.getValue());

}

return 0;

}

public static void main(String[] args) throws Exception {

int exitCode = ToolRunner.run(new ConfigurationPrinter(), args);
System.exit(exitCode);

}

}

We make ConfigurationPrinter a subclass of Configured, which is an implementation of the

Configurable interface. All implementations of Tool need to implement Configurable (since

Tool extends it), and subclassing Configured is often the easiest way to achieve this. The run()

method obtains the Configuration using Configurable’s getConf() method and then iterates

over it, printing each property to standard output.

The static block makes sure that the HDFS and MapReduce configurations are picked up in

addition to the core ones (which Configuration knows about already).

ConfigurationPrinter’s main() method does not invoke its own run() method directly.

Instead, we call ToolRunner’s static run() method, which takes care of creating a

Configuration object for the Tool before calling its run() method. ToolRunner also uses a

GenericOptionsParser to pick up any standard options specified on the command line and to

set them on the Configuration instance. We can see the effect of picking up the properties

specified in conf/hadoop-localhost.xml by running the following command:

% mvn compile
% export HADOOP_CLASSPATH=target/classes/

% hadoop ConfigurationPrinter -conf conf/hadoop-localhost.xml\

|grep mapred.job.tracker=
 mapred.job.tracker=localhost:8021

GenericOptionsParser also allows you to set individual properties. For example:

% hadoop ConfigurationPrinter -D color=yellow | grep color
color=yellow

The -D option is used to set the configuration property with key color to the value yellow.

Options specified with -D take priority over properties from the configuration files. This is very

useful because you can put defaults into configuration files and then override them with the

-D option as needed. A common example of this is setting the number of reducers for a

MapReduce job via -D mapred.reduce.tasks=n. This will override the number of reducers set

on the cluster or set in any client-side configuration files.

Writing a Unit Test with MRUnit

The map and reduce functions in MapReduce are easy to test in isolation, which is a

consequence of their functional style. MRUnit (http://incubator.apache.org/mrunit/) is a testing

library that makes it easy to pass known inputs to a mapper or a reducer and check that the

outputs are as expected. MRUnit is used in conjunction with a standard test execution

framework, such as JUnit, so you can run the tests for MapReduce jobs as a part of your normal

development environment.

Mapper
The test for the mapper is shown in Example 5-5.

Example 5-5. Unit test for MaxTemperatureMapper

import java.io.IOException;
import org.apache.hadoop.io.*;
import org.apache.hadoop.mrunit.mapreduce.MapDriver;
import org.junit.*;

public class MaxTemperatureMapperTest {

 @Test
 public void processesValidRecord() throws IOException, InterruptedException {
 Text value = new Text("0043011990999991950051518004+68750+023550FM-12+0382" +

 // Year ^^^^

http://incubator.apache.org/mrunit/

"99999V0203201N00261220001CN9999999N9-00111+99999999999");
 // Temperature ^^^^^

 new MapDriver<LongWritable, Text, Text, IntWritable>()
 .withMapper(new MaxTemperatureMapper())
 .withInputValue(value)
 .withOutput(new Text("1950"), new IntWritable(-11))
 .runTest();
 }
}

The idea of the test is very simple: pass a weather record as input to the mapper, and check

that the output is the year and temperature reading.

Since we are testing the mapper, we use MRUnit’s MapDriver, which we configure with the

mapper under test (MaxTemperatureMapper), the input value, and the expected output key (a

Text object representing the year, 1950) and expected output value (an IntWritable representing

the temperature, −1.1°C), before finally calling the runTest() method to execute the test. If the

expected output values are not emitted by the mapper, MRUnit will fail the test. Notice that we

didn’t set the input key because our mapper ignores it.

Reducer

The reducer has to find the maximum value for a given key. Here’s a simple test for this

feature, which uses a ReduceDriver:

@Test
public void returnsMaximumIntegerInValues() throws IOException,
 InterruptedException {

 new ReduceDriver<Text, IntWritable, Text, IntWritable>()
 .withReducer(new MaxTemperatureReducer())
 .withInputKey(new Text("1950"))
 .withInputValues(Arrays.asList(new IntWritable(10), new IntWritable(5)))
 .withOutput(new Text("1950"), new IntWritable(10))
 .runTest();
}

We construct a list of some IntWritable values and then verify that MaxTemperatureReducer

picks the largest. The code in Example 5-7 is for an implementation of MaxTemperatureReducer
that passes the test.

Example 5-7. Reducer for the maximum temperature example

public class MaxTemperatureReducer
 extends Reducer<Text, IntWritable, Text, IntWritable> {

 @Override
 public void reduce(Text key, Iterable<IntWritable> values, Context context)
 throws IOException, InterruptedException {

 int maxValue = Integer.MIN_VALUE;
 for (IntWritable value : values) {
 maxValue = Math.max(maxValue, value.get());
 }
 context.write(key, new IntWritable(maxValue));
 }
}

Running Locally on Test Data
Now that we have the mapper and reducer working on controlled inputs, the next step is to

write a job driver and run it on some test data on a development machine.

Running a Job in a Local Job Runner
Using the Tool interface introduced earlier in the chapter, it’s easy to write a driver to run our

MapReduce job for finding the maximum temperature by year.

Example 5-8. Application to find the maximum temperature

public class MaxTemperatureDriver extends Configured implements Tool {

 @Override
 public int run(String[] args) throws Exception {
 if (args.length != 2) {
 System.err.printf("Usage: %s [generic options] <input> <output>\n",
 getClass().getSimpleName());
 ToolRunner.printGenericCommandUsage(System.err);
 return -1;
 }

 Job job = new Job(getConf(), "Max temperature");
 job.setJarByClass(getClass());

 FileInputFormat.addInputPath(job, new Path(args[0]));
 FileOutputFormat.setOutputPath(job, new Path(args[1]));

 job.setMapperClass(MaxTemperatureMapper.class);
 job.setCombinerClass(MaxTemperatureReducer.class);
 job.setReducerClass(MaxTemperatureReducer.class);

 job.setOutputKeyClass(Text.class);
 job.setOutputValueClass(IntWritable.class);

 return job.waitForCompletion(true) ? 0 : 1;
 }

 public static void main(String[] args) throws Exception {
 int exitCode = ToolRunner.run(new MaxTemperatureDriver(), args);
 System.exit(exitCode);
 }
 }

MaxTemperatureDriver implements the Tool interface, so we get the benefit of being able to set

the options that GenericOptionsParser supports. The run() method constructs a Job object based

on the tool’s configuration, which it uses to launch a job. Among the possible job configuration

parameters, we set the input and output file paths, the mapper, reducer, and combiner classes,

and the output types (the input types are determined by the input format, which defaults to

TextInputFormat and has LongWritable keys and Text values). It’s also a good idea to set a

name for the job (Max temperature) so that you can pick it out in the job list during execution

and after it has completed. By default, the name is the name of the JAR file, which normally is

not particularly descriptive.

Now we can run this application against some local files. Hadoop comes with a local job runner,

a cut-down version of the MapReduce execution engine for running Map- Reduce jobs in a single

JVM. It’s designed for testing and is very convenient for use in an IDE, since you can run it in a

debugger to step through the code in your mapper and reducer.

Testing the Driver
Apart from the flexible configuration options offered by making your application implement

Tool, you also make it more testable because it allows you to inject an arbitrary Configuration.

You can take advantage of this to write a test that uses a local job runner to run a job against

known input data, which checks that the output is as expected.

There are two approaches to doing this. The first is to use the local job runner and run the job

against a test file on the local filesystem. The code in Example 5-11 gives an idea of how to do

this.

Example 5-11. A test for MaxTemperatureDriver that uses a local, in-process job runner

 @Test
 public void test() throws Exception {
 Configuration conf = new Configuration();
 conf.set("fs.default.name", "file:///");
 conf.set("mapred.job.tracker", "local");

 Path input = new Path("input/ncdc/micro");
 Path output = new Path("output");
 FileSystem fs = FileSystem.getLocal(conf);
 fs.delete(output, true); // delete old output

 MaxTemperatureDriver driver = new MaxTemperatureDriver();
 driver.setConf(conf);

 int exitCode = driver.run(new String[] {
 input.toString(), output.toString() });
 assertThat(exitCode, is(0));

 checkOutput(conf, output);
 }

The test explicitly sets fs.default.name and mapred.job.tracker so it uses the local filesystem

and the local job runner. It then runs the MaxTemperatureDriver via its Tool interface against a

small amount of known data. At the end of the test, the checkOutput() method is called to

compare the actual output with the expected output, line by line.

The second way of testing the driver is to run it using a “mini-” cluster. Hadoop has a set of

testing classes, called MiniDFSCluster, MiniMRCluster, and MiniYARNCluster, that provide a

programmatic way of creating in-process clusters. Unlike the local job runner, these allow testing

against the full HDFS and MapReduce machinery.

Mini-clusters are used extensively in Hadoop’s own automated test suite, but they can be used

for testing user code, too. Hadoop’s ClusterMapReduceTestCase abstract class provides a

useful base for writing such a test, handles the details of starting and stopping the in-process

HDFS and MapReduce clusters in its setUp() and tearDown() methods, and generates a

suitable configuration object that is set up to work with them. Subclasses need only populate

data in HDFS, run a MapReduce job, and confirm the output is as expected.

Tests like this serve as regression tests, and are a useful repository of input edge cases and their

expected results. As you encounter more test cases, you can simply add them to the input file

and update the file of expected output accordingly.

Running on a Cluster
Now that we are happy with the program running on a small test dataset, we are ready to try it

on the full dataset on a Hadoop cluster.

Packaging a Job
The local job runner uses a single JVM to run a job, so as long as all the classes that your job

needs are on its classpath, then things will just work.

In a distributed setting, things are a little more complex. For a start, a job’s classes must be

packaged into a job JAR file to send to the cluster. Hadoop will find the job JAR automatically

by searching for the JAR on the driver’s classpath that contains the class set in the

setJarByClass() method (on JobConf or Job). Alternatively, if you want to set an explicit JAR

file by its file path, you can use the setJar() method.

Creating a job JAR file is conveniently achieved using a build tool such as Ant or Maven. The

following Maven command, for example, will create a JAR file called hadoop- examples.jar in

the project directory containing all of the compiled classes:

% mvn package -DskipTests

If you have a single job per JAR, you can specify the main class to run in the JAR file’s manifest. If

the main class is not in the manifest, it must be specified on the command line.

Any dependent JAR files can be packaged in a lib subdirectory in the job JAR file. Similarly,

resource files can be packaged in a classes subdirectory.

The client classpath

The user’s client-side classpath set by hadoop jar <jar> is made up of:

 The job JAR file

 Any JAR files in the lib directory of the job JAR file, and the classes directory (if present)

 The classpath defined by HADOOP_CLASSPATH, if set

This explains why you have to set HADOOP_CLASSPATH to point to dependent classes and

libraries if you are running using the local job runner without a job JAR (hadoop CLASSNAME).

The task classpath

On a cluster (and this includes pseudodistributed mode), map and reduce tasks run in separate

JVMs, and their classpaths are not controlled by HADOOP_CLASSPATH. HADOOP_CLASSPATH is a

client-side setting and only sets the classpath for the driver JVM, which submits the job.

Instead, the user’s task classpath is comprised of the following:

 The job JAR file

 Any JAR files contained in the lib directory of the job JAR file, and the classes directory
(if present)

 Any files added to the distributed cache, using the –libjars option, or the

addFileToClassPath() method on Job.

Packaging dependencies

Given these different ways of controlling what is on the client and task classpaths, there are

corresponding options for including library dependencies for a job.

• Unpack the libraries and repackage them in the job JAR.

• Package the libraries in the lib directory of the job JAR.

• Keep the libraries separate from the job JAR, and add them to the client classpath via

HADOOP_CLASSPATH and to the task classpath via -libjars.

The last option, using the distributed cache, is simplest from a build point of view because

dependencies don’t need rebundling in the job JAR. Also, the distributed cache can mean fewer

transfers of JAR files around the cluster, since files may be cached on a node between tasks.

Task classpath precedence

User JAR files are added to the end of both the client classpath and the task classpath, which in

some cases can cause a dependency conflict with Hadoop’s built-in libraries if Hadoop uses a

different, incompatible version of a library that your code uses. Sometimes you need to be able

to control the task classpath order so that your classes are picked up first. On the client side, you

can force Hadoop to put the user classpath first in the search order by setting the

HADOOP_USER_CLASSPATH_FIRST environment variable to true. For the task classpath, you

can set mapreduce.task.classpath.first to true. Note that by setting these options you change

the class loading for Hadoop framework dependencies (but only in your job), which could

potentially cause the job submission or task to fail, so use these options with caution.

Launching a Job
To launch the job, we need to run the driver, specifying the cluster that we want to run the job

on with the -conf option:

% unset HADOOP_CLASSPATH
% hadoop jar hadoop-examples.jar v3.MaxTemperatureDriver \
 -conf conf/hadoop-cluster.xml input/ncdc/all max-temp

The waitForCompletion() method on Job launches the job and polls for progress, writing a line
summarizing the map and reduce’s progress whenever either changes. Here’s the output:

09/04/11 08:15:52 INFO mapred.FileInputFormat: Total input paths to process : 101
09/04/11 08:15:53 INFO mapred.JobClient: Running job: job_200904110811_0002
09/04/11 08:15:54 INFO mapred.JobClient: map 0% reduce 0%
09/04/11 08:16:06 INFO mapred.JobClient: map 28% reduce 0%
09/04/11 08:16:07 INFO mapred.JobClient: map 30% reduce 0%
...
09/04/11 08:21:36 INFO mapred.JobClient: map 100% reduce 100%
09/04/11 08:21:38 INFO mapred.JobClient: Job complete: job_200904110811_0002
09/04/11 08:21:38 INFO mapred.JobClient: Counters: 19
09/04/11 08:21:38 INFO mapred.JobClient: Job Counters
09/04/11 08:21:38 INFO mapred.JobClient: Launched reduce tasks=32
09/04/11 08:21:38 INFO mapred.JobClient: Rack-local map tasks=82
09/04/11 08:21:38 INFO mapred.JobClient: Launched map tasks=127

09/04/11 08:21:38 INFO mapred.JobClient: Data-local map tasks=45
09/04/11 08:21:38 INFO mapred.JobClient: FileSystemCounters
09/04/11 08:21:38 INFO mapred.JobClient: FILE_BYTES_READ=12667214
09/04/11 08:21:38 INFO mapred.JobClient: HDFS_BYTES_READ=33485841275
09/04/11 08:21:38 INFO mapred.JobClient: FILE_BYTES_WRITTEN=989397
09/04/11 08:21:38 INFO mapred.JobClient: HDFS_BYTES_WRITTEN=904
09/04/11 08:21:38 INFO mapred.JobClient: Map-Reduce Framework
09/04/11 08:21:38 INFO mapred.JobClient: Reduce input groups=100
09/04/11 08:21:38 INFO mapred.JobClient: Combine output records=4489
09/04/11 08:21:38 INFO mapred.JobClient: Map input records=1209901509
09/04/11 08:21:38 INFO mapred.JobClient: Reduce shuffle bytes=19140
09/04/11 08:21:38 INFO mapred.JobClient: Reduce output records=100
09/04/11 08:21:38 INFO mapred.JobClient: Spilled Records=9481
09/04/11 08:21:38 INFO mapred.JobClient: Map output bytes=10282306995
09/04/11 08:21:38 INFO mapred.JobClient: Map input bytes=274600205558
09/04/11 08:21:38 INFO mapred.JobClient: Combine input records=1142482941
09/04/11 08:21:38 INFO mapred.JobClient: Map output records=1142478555
09/04/11 08:21:38 INFO mapred.JobClient: Reduce input records=103

The output includes more useful information. Before the job starts, its ID is printed; this is needed

whenever you want to refer to the job—in logfiles, for example—or when interrogating it via the

hadoop job command. When the job is complete, its statistics (known as counters) are printed out.

These are very useful for confirming that the job did what you expected. For example, for this job

we can see that around 275 GB of input data was analyzed (Map input bytes), read from around 34

GB of compressed files on HDFS (HDFS_BYTES_READ). The input was broken into 101 gzipped files of

reasonable size, so there was no problem with not being able to split them.

The MapReduce Web UI
Hadoop comes with a web UI for viewing information about your jobs. It is useful for following a

job’s progress while it is running, as well as finding job statistics and logs after the job has

completed. You can find the UI at http://jobtracker-host:50030/.

The jobtracker page
A screenshot of the home page is shown in Figure 5-1. The first section of the page gives details of

the Hadoop installation, such as the version number and when it was compiled, and the current

state of the jobtracker (in this case, running) and when it was started.

Next is a summary of the cluster, which has measures of cluster capacity and utilization. This shows

the number of maps and reduces currently running on the cluster, the total number of job

submissions, the number of tasktracker nodes currently available, and the cluster’s capacity, in

terms of the number of map and reduce slots available across the cluster (“Map Task Capacity”

and “Reduce Task Capacity”) and the number of available slots per node, on average. The

number of tasktrackers that have been blacklisted by the jobtracker is listed as well.

Below the summary, there is a section about the job scheduler that is running (here, the default).

You can also see job queues.

Further down, we see sections for running, (successfully) completed, and failed jobs. Each of

these sections has a table of jobs, with a row per job that shows the job’s ID, owner, name (as

set in the Job constructor or setJobName() method, both of which internally set the

mapred.job.name property), and progress information.

Finally, at the foot of the page, there are links to the jobtracker’s logs and the jobtracker’s

history, which contains information on all the jobs that the jobtracker has run. The main view

displays only 100 jobs before consigning them to the history page. Note also that the job history

is persistent, so you can find jobs here from previous runs of the jobtracker.

The job page

Clicking on a job ID brings you to a page for the job, illustrated in Figure 5-2. At the top of the

page is a summary of the job, with basic information such as job owner and name and how long

the job has been running for. The job file is the consolidated configuration file for the job,

containing all the properties and their values that were in effect during the job run. If you are

unsure of what a particular property was set to, you can click through to inspect the file.

While the job is running, you can monitor its progress on this page, which periodically updates

itself. Below the summary is a table that shows the map progress and the reduce progress. “Num

Tasks” shows the total number of map and reduce tasks for this job (a row for each). The other

columns then show the state of these tasks: “Pending” (waiting to run), “Running,” “Complete”

(successfully run), or “Killed” (tasks that have failed; this column would be more accurately labeled

“Failed”). The final column shows the total number of failed and killed task attempts for all the

map or reduce tasks for the job.

Farther down the page, you can find completion graphs for each task that show their progress

graphically. The reduce completion graph is divided into the three phases of the reduce task:

copy (when the map outputs are being transferred to the reduce’s tasktracker), sort (when the

reduce inputs are being merged), and reduce (when the reduce function is being run to produce

the final output).

In the middle of the page is a table of job counters. These are dynamically updated during the

job run and provide another useful window into the job’s progress and general health.

Retrieving the Results
Once the job is finished, there are various ways to retrieve the results. Each reducer produces

one output file, so there are 30 part files named part-r-00000 to part- r-00029 in the max-temp

directory.

This job produces a very small amount of output, so it is convenient to copy it from HDFS to our

development machine. The -getmerge option to the hadoop fs command is useful here, as it

gets all the files in the directory specified in the source pattern and merges them into a single

file on the local filesystem:

% hadoop fs -getmerge max-temp max-temp-local
% sort max-temp-local | tail
1991 607
1992 605
1993 567
1994 568
1995 567
1996 561
1997 565
1998 568
1999 568
2000 558

We sorted the output, as the reduce output partitions are unordered. Doing a bit of

postprocessing of data from MapReduce is very common, as is feeding it into analysis tools such

as R, a spreadsheet, or even a relational database.

Another way of retrieving the output if it is small is to use the -cat option to print the output

files to the console:

% hadoop fs -cat max-temp/*

On closer inspection, we see that some of the results don’t look reasonable. For instance, the

maximum temperature for 1951 (not shown here) is 590°C! How do we find out what’s causing

this? Is it corrupt input data or a bug in the program?

Debugging a Job
The way of debugging programs is via print statements, and this is certainly possible in Hadoop.

However, there are complications to consider: with programs running on tens, hundreds, or

thousands of nodes, how do we find and examine the output of the debug statements, which

may be scattered across these nodes? For this particular case, where we are looking for an

unusual case, we can use a debug statement to log to standard error, in conjunction with a

message to update the task’s status message to prompt us to look in the error log. The web UI

makes this easy.

We also create a custom counter to count the total number of records with unreasonable

temperatures in the whole dataset. This gives us valuable information about how to deal with

the condition.

We add our debugging to the mapper, as opposed to the reducer, as we want to find out what

the source data causing the anomalous output looks like:

public class MaxTemperatureMapper
 extends Mapper<LongWritable, Text, Text, IntWritable> {

 enum Temperature {
 OVER_100
 }

 private NcdcRecordParser parser = new NcdcRecordParser();

 @Override
 public void map(LongWritable key, Text value, Context context)
 throws IOException, InterruptedException {

 parser.parse(value);
 if (parser.isValidTemperature()) {
 int airTemperature = parser.getAirTemperature();
 if (airTemperature > 1000) {
 System.err.println("Temperature over 100 degrees for input: " + value);
 context.setStatus("Detected possibly corrupt record: see logs.");
 context.getCounter(Temperature.OVER_100).increment(1);
 }
 context.write(new Text(parser.getYear()), new IntWritable(airTemperature));
 }
 }
}

If the temperature is over 100°C (represented by 1000, because temperatures are in tenths

of a degree), we print a line to standard error with the suspect line, as well as update the

map’s status message using the setStatus() method on Context directing us to look in the

log. We also increment a counter, which in Java is represented by a field of an enum type. In

this program, we have defined a single field OVER_100 as a way to count the number of records

with a temperature of over 100°C.

With this modification, we recompile the code, re-create the JAR file, then rerun the job, and

while it’s running, go to the tasks page.

The tasks page

The job page has a number of links for viewing the tasks in a job in more detail. For example, by

clicking on the “map” link, you are brought to a page that lists information for all of the map tasks

on one page. You can also see just the completed tasks. The screenshot in Figure 5-3 shows a

portion of this page for the job run with our debugging statements. Each row in the table is a task,

and it provides such information as the start and end times for each task, any errors reported

back from the tasktracker, and a link to view the counters for an individual task.

The “Status” column can be helpful for debugging because it shows a task’s latest status message.

Before a task starts, it shows its status as “initializing,” and then once it starts reading records, it

shows the split information for the split it is reading as a filename with a byte offset and length.

You can see the status we set for debugging for task task_200904110811_0003_m_000044, so

let’s click through to the logs page to find the associated debug message. (Notice that there is

an extra counter for this task because our user counter has a nonzero count for this task.)

The task details page

From the tasks page, you can click on any task to get more information about it. The task details

page, shown in Figure 5-4, shows each task attempt. In this case, there was one task attempt,

which completed successfully. The table provides further useful data, such as the node the task

attempt ran on and links to task logfiles and counters.

The “Actions” column contains links for killing a task attempt. By default, this is disabled, making
the web UI a read-only interface. Set webinterface.private.actions to true to enable the actions
links.

Hadoop Logs
Hadoop produces logs in various places, and for various audiences. These are summarized in

Table 5-2.

As we have seen in the previous section, MapReduce task logs are accessible through the web

UI, which is the most convenient way to view them. You can also find the logfiles on the local

filesystem of the tasktracker that ran the task attempt, located in a directory named by the task

attempt. If task JVM reuse is enabled, each logfile accumulates the logs for the entire JVM run,

so multiple task attempts will be found in each logfile. The web UI hides this by showing only the

portion that is relevant for the task attempt being viewed.

It is straightforward to write to these logfiles. Anything written to standard output or standard

error is directed to the relevant logfile.

Remote Debugging
When a task fails and there is not enough information logged to diagnose the error, you may

want to resort to running a debugger for that task. This is hard to arrange when running the job

on a cluster, as you don’t know which node is going to process which part of the input, so you

can’t set up your debugger ahead of the failure. However, there are a few other options available:

Reproduce the failure locally

Often the failing task fails consistently on a particular input. You can try to reproduce the

problem locally by downloading the file that the task is failing on and running the job locally,

possibly using a debugger such as Java’s VisualVM.

Use JVM debugging options

A common cause of failure is a Java out of memory error in the task JVM. You can set

mapred.child.java.opts to include -XX:-HeapDumpOnOutOfMemoryError -XX:Heap

DumpPath=/path/to/dumps. This setting produces a heap dump that can be examined afterward

with tools such as jhat or the Eclipse Memory Analyzer. Note that the JVM options should be

added to the existing memory settings specified by mapred.child.java.opts.

Use task profiling

Java profilers give a lot of insight into the JVM, and Hadoop provides a mechanism to profile a

subset of the tasks in a job.

Use IsolationRunner

Older versions of Hadoop provided a special task runner called IsolationRunner that could rerun
failed tasks in situ on the cluster.

In some cases it’s useful to keep the intermediate files for a failed task attempt for later

inspection, particularly if supplementary dump or profile files are created in the task’s working

directory. You can set keep.failed.task.files to true to keep a failed task’s files.

You can keep the intermediate files for successful tasks, too, which may be handy if you want

to examine a task that isn’t failing. In this case, set the property keep.task.files.pattern to

a regular expression that matches the IDs of the tasks you want to keep.

To examine the intermediate files, log into the node that the task failed on and look for the

directory for that task attempt. It will be under one of the local MapReduce directories, as set

by the mapred.local.dir property. If this property is a comma-separated list of directories (to

spread load across the physical disks on a machine), you may need to look in all of the directories

before you find the directory for that particular task attempt. The task attempt directory is in the

following location:

mapred.local.dir/taskTracker/jobcache/job-ID/task-attempt-ID

**

